Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение призматического стержня прямоугольное

Давая углу кручения различные значения, мы будем получать различные виды границы между упругой и пластической областью. На рис. 3.6 показано постепенное продвижение границы пластической области при увеличении угла кручения (крутящего момента), приложенного к призматическому стержню прямоугольного сечения.  [c.163]

После весьма обширного обзора существующих теорий, относящихся к поведению призматических стержней прямоугольного, квадратного и круглого поперечных сечений при изгибе, растяжении, сжатии и кручении, Дюло приступает к проведению многочисленных экспериментов, проверяя результаты их различными расчетами, включая использование формулы Эйлера для продольного изгиба стоек, и меняя размеры образцов от опыта к опыту. Он также осуществил эксперименты со стержнями арочной формы, но тех же поперечных сечений, и с системами, представляющими собой ансамбль призматических стержней, проверяя такой вопрос, как трение между примыкающими друг к другу стержнями при изгибе и т. д. Кроме того, он проявил интерес к линии раздела между областями сжатия и растяжения в балках из ковкого железа (т. е. к нейтральной линии), а также линейности зависимости между напряжениями и деформациями.  [c.265]


ЭТИМИ уравнениями в исследовании деформаций прямоугольных стержней. В особенности его заинтересовывает задача кручения прямоугольного стержня, причем ему удается найти удовлетворительное решение для стержня узкого прямоугольного поперечного сечения. Он показывает, что поперечные сечения стержня, подвергающегося кручению, как общее правило, не остаются плоскими, но коробятся. Заключения, к которым пришел Коши, были использованы впоследствии Сен-Венаном, сформулировавшим более полную теорию кручения призматических стержней (см. стр. 283).  [c.136]

При кручении призматических стержней узкое прямоугольное сечение является невыгодным профилем, так как его жесткость, как это следует из формулы (133), значительно меньше жесткости круглого сечения, имеющего такую же площадь, что и узкий прямоугольник  [c.275]

Весьма обширная серия испытаний железа и железных конструкций была проведена Дюло ), другим воспитанником Политехнической школы. В первой части своего труда Дюло устанавливает необходимые формулы для изгиба и выпучивания призматических стержней, изгиба арок и кручения валов. Отыскивая положение нейтральной линии при изгибе, он ошибочно полагает момент растягивающих сил относительно нее рапным моменту сжимающих сил. Поскольку большая часть его работы относится к балкам прямоугольного и круглого профилей, эта ошибка не оказывает влияния на выводы. С самого начала он определяет модули упругости при растяжении и сжатии и, делая допущение, что поперечные сечения остаются при изгибе плоскими, выводит дифференциальное уравнение изогнутой оси. Он применяет это уравнение к консоли и к балке, свободно опертой по концам.  [c.101]

Возможно применение для расчета пролетных строений с замкнутым деформируемым контуром общего вариационного метода В. 3. Власова, рассматривающего несущую конструкцию как призматическую тонкостенную систему. Расчет стержня-оболочки с изменяемым прямоугольным профилем сводится В. 3. Власовым к решению восьми дифференциальных уравнений, из которых три уравнения, образующие симметричную систему, определяют деформированное состояние, связанное с кручением и искажением контура поперечного сечения.  [c.136]

Эксперименты Баушинге-ра (Baus hinger [1881, 2]), в которых он также изучал кручение призматических стержней круглого, эллиптического, квадратного и прямоугольного поперечных сечений, имели преимущество быть выполненными четверть века спустя после создания теории Сен-Венана. Тем не менее и Баушингер нашел, что измерения при кручении достаточно чувствительны для того, чтобы легко обнаружить существенную нелинейность, однако он не был настроен против представления результатов своих опытов в видетаблицы значений касательного модуля при сдвиге. На рис. 2.37 приведены значения касательного модуля при сдвиге, найденные Баушингером при различных формах поперечного сечения чугунных призматических образцов.  [c.135]


Еще в 1828 г. Коши и Пуассон применили общие уравнения для оценки пригодности элементарной теории изгиба тонких стержней, а в следующем году Коши вывел приближенные формулы для кручения тонких прямоугольных стержней. Эти исследования Коши дали толчок для развития Сен-Ве-наном общей теории изгиба и кручения призматических стержней, явившейся крупнейшим практическим достижением теории упругости в середине XIX в.  [c.55]

Как известно, задача о свободном кручении призматического стержня приводится к гармонической проб1леме, методы решения которой хорошо разработаны. Ранние работы по теории кручения стержней посвяш ены решению этой задачи в замкнутом виде или при помош и тригонометрических рядов к ним относятся статьи Б. Г. Галеркина, в которых исследовано кручение призмы с сечением в виде равнобедренного прямоугольного треугольника (1919) и призм параболического поперечного сечения (1924) ряд задач о кручении сечений, ограниченных алгебраическими кривыми, решен в работах Д. Ю. Панова (1935, 1937) и Д. Л. Гавры (1939) позднее кручением параболических призм занимался В, И. Блох (1959). Влияние радиальной трещины при кручении сплошного и полого валов изучено в статьях А. Ш. Локшина (1928) и В. Н. Лыскова (1930). Различным методам решения задачи теории кручения, включая и экспериментальные методы, посвящена монография А. Н. Динника, вышедшая в 1938 г-  [c.25]

Рассмотрим задачу о кручении призматического стержня с прямоугольным поперечным сечением. Согласно мембранной аналогии функция напряжений и (х, у) для прямоугольного профиля будет симметричной функцией относительно осей Ох и Оу (рис. 6). Поэтому эту функцию достаточно определить только в четвертой части области сечения ОАВСО, потребовав при этом, чтобы нормальная производная функции напряжений на осях симметрии равнялась нулю  [c.255]

Кручение (и изгиб) призматических стержней с полым прямоугольным сечением изучил в 1950 г. Б. Л. Абрамян в другой статье им исследован случай круглого вала с продольными полостями (1959) в работе Б. Л. Абрамяна и А. А. Баблояна (1960) исследовано кручение круглого стержня с продольными выточками или зубцами, имеющего центральную круглую полость. Тем же методом вспомогательных функций и сведением к бесконечным системам Н. О. Гулканян (1960) изучила кручение прямоугольной призмы с двумя симметричными прямоугольными полостями. В. С. Тоноян  [c.29]


Смотреть страницы где упоминается термин Кручение призматического стержня прямоугольное : [c.131]    [c.28]    [c.459]    [c.292]   
Теория упругости Основы линейной теории и ее применения (1988) -- [ c.0 ]



ПОИСК



К призматический - Кручение

КРУЧЕНИЕ Кручение призматических стержней

Кручение призматического стержня

Кручение прямоугольное

Кручение стержней

Прямоугольные стержни

Прямоугольные стержни кручение

Стержень призматический

Стержни — Стержни призматические



© 2025 Mash-xxl.info Реклама на сайте