Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Леонардо да Винчи

Теория и расчет деталей м а ш и и разрабатывались но мере появления и совершенствования конструкций. Простые расчеты определение передаточных отношений и действующих сил -- были известны еше в древней Греции. Первым исследователем в области деталей машин должен, по-видимому, считаться Леонардо да Винчи. Он рассматривал вопросы  [c.9]

Так, известно, что выдающийся деятель культуры эпохи Возрождения и ученый Леонардо да Винчи (1452—1519) разработал проекты конструкций механизмов ткацких станков, печатных и деревообрабатывающих машин, им сделана попытка определить экспериментальным путем коэффициент трения. Итальянский врач и математик Д. Кардан (1501 — 1576) изучал движение механизмов часов и мельниц. Французские ученые Г, Амонтон (1663—1705) и Ш, Кулон (1736—1806) первыми предложили формулы для определения силы трения покоя и скольжения.  [c.5]


Первый, кто обратил внимание на ван<ную роль в механике момента силы относительно точки, был Леонардо да Винчи (1452—1519). Современную трактовку понятия момента силы относительно точки дал П. Вариньон (1654—1722).  [c.33]

Золотая пропорция занимает ведущее место в художественных канонах Леонардо да Винчи и Дюрера. Центр золотого сечения человеческого тела располагается точно в месте пупка. Высота лица (до корней волос) относится к вертикальному расстоянию между дугами бровей и нижней частью подбородка, как расстояние между нижней частью носа и нижней частью подбородка относится к расстоянию между углами губ и нижней частью подбородка, это отношение равно золотой пропорции.  [c.76]

В эпоху Возрождения великий итальянский ученый Леонардо да Винчи (1452—1519 гг.) впервые исследовал законы движения падающих тел и тел, движущихся по наклонной плоскости, установил понятие о моменте силы относительно точки, а также исследовал вопросы трения. Крупнейший вклад в развитие механики, в особенности разделов кинематики и динамики, внес итальянский ученый Галилео Галилей (1564—1642 гг.).  [c.5]

Естественные науки, а вместе с ними и механика, начали снова развиваться в эпоху Возрождения, с XV в. В начале этого периода особенно большой прогресс в развитии механики был достигнут благодаря работам знаменитого итальянского ученого Леонардо да Винчи (1452—i 1519). Он занимался исследованиями в области теории механизмов, изучал трение в машинах, исследовал движение воды в трубах и движение тел по наклонной плоскости. Им был построен эллиптический  [c.13]

Целенаправленные опыты по изучению сил трения проводил гениальный художник, а также выдающийся исследователь и изобретатель эпохи Возрождения Леонардо да Винчи.  [c.35]

Первые исследования в области теории механизмов, трения и движения тел по наклонной плоскости были проделаны художником, геометром и инженером Леонардо да Винчи (1452—1519). Огромная заслуга в развитии механики принадлежит итальянскому ученому Галилео Галилею (1564—1642), который, по-существу, положил начало динамике.  [c.13]

Понятие момента силы относительно точки ввел в механику итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452—1519).  [c.29]

Первые зачатки гидродинамики также относятся к античному периоду. В середине XV в. Леонардо да Винчи (1452—1519 гг.) поставил первые лабораторные опыты и положил начало экспериментальной гидравлике, исследовав некоторые вопросы движения воды в каналах, через отверстия и водосливы. Торичелли (1608—1647 гг.) дал известную формулу для скорости жидкости, вытекающей из отверстия, а Ньютон (1642—1724 гг.) высказал основные положения о внутреннем трении г движущихся жидкостях.  [c.5]


В период средневековья многие знания были утрачены, и лишь, в эпоху Возрождения задачи механики и статики стали успешно решаться. Гениальной личностью этого периода является Леонардо да Винчи (1452—1519), который уже умел пользоваться правилом параллелограмма, испытывал проволоку на разрыв, рассчитывал балки на двух опорах.  [c.5]

Возникновение науки о сопротивлении материалов связывают с именем знаменитого итальянского ученого Галилео Галилея (1564— 1642), проводившего опыты по изучению прочности, хотя истоки этой науки мы видим уже в творениях великого Леонардо да Винчи.  [c.15]

Первые указания о научном подходе к решению гидравлических вопросов относятся к 250 году до нашей эры, когда Архимедом был открыт закон о равновесии тела, погруженного в жидкость. В дальнейшем, однако, на протяжении последующих более чем полутора тысячелетий гидравлика не получила сколько-нибудь заметного развития. В эту эпоху, характеризовавшуюся общим застоем в науке и культуре, были не только утеряны первые элементы знания, но и в значительной степени забыты практические навыки инженерного искусства. И только в XVI— XVn вв., в эпоху Возрождения, когда появились работы Сте-вина, Леонардо да Винчи, Галилея, Паскаля, Ньютона, исследо-  [c.5]

В XV — XVI вв. знаменитый ученый Леонардо да Винчи (1452— 1519 гг.) написал исследование О движении и измерении воды , которое, правда, было опубликовано только в XX столетии.  [c.6]

Известный закон Архимеда, определяющий силы давления жидкости на поверхность погруженного в нее тела, дошел в полной неприкосновенности до наших дней. В XIV веке знаменитый ученый Леонардо да Винчи (1452—1519) написал исследование О движении и измерении воды , которое, правда, было опубликовано только в XX столетии.  [c.7]

Особое развитие гидравлика получила в средние века. В XV в. Леонардо да Винчи (1452— 1519 гг.) написал  [c.6]

П7.4. Большой вклад в развитие теории изображений внесли ученые Альберти Л. (1404—1472), Леонардо да Винчи (1452—1519), Дюрер А. (1471—1528), Ж. Дезарг (1593—1662), Р. Декарт (1596—1650) и И. Ламберт (1728—1777). Необходимо отметить, что еще Аполоний из Перги использовал координаты, но без координатных чисел. В Географии Птолемея (85 —168 ) широта и долгота уже были числовыми координатами.  [c.272]

Отметим, что еще раньше, чем Декарт, примерно также писал Леонардо Да Винчи (15—16 в.) и многие другие ученые тех времен. Примерно также говорили и писатели. В наше время многие деятели науки и деловых кругов, например академик Д Е. Лотте. По его мнению, неряшливость в терминологии столь же опасна, как туман для мореплавателей (1961).  [c.416]

Итальянский ученый Альберти (1404—1472), использовав опыт мастеров-профессионалов, дал основы теоретической перспективы. Гениальный итальянский художник и ученый Леонардо да Винчи (1452—1519) дополнил линейную перспективу учением об уменьшении цветов и отчетливости очертаний . Этим самым абстрактное геометрическое пространство как бы насыщалось воздухом. В результате Леонардо получал исключительно рельефные изображения. Немецкий художник и гравер Дюрер (1471 —1528) внес большой вклад в развитие перспективы. Известен его способ построения перспективы по двум ортогональным проекциям предмета. Итальянский ученый У б а л ь д и (1545—1607) по праву может считаться основателем теоретической перспективы, так как в его работах содержится решение почти всех основных задач перспективы.  [c.5]

При росписи знаменитых бронзовых дверей баптистерия во Флоренции итальянский зодчий Лоренцо Гиберти (1378—1455) перенес принципы живописной перспективы на пластическое изображение в виде рельефа. В работах гениального итальянского художника, ученого и инженера Леонардо да Винчи (1452—1519) имеются многочисленные примеры применения перспективных изображений, в частности наблюдательной перспективы.  [c.167]

Блестящим представителем эпохи Возрождения является гепи-альпый итальянский художник, физик, механик и инженер Леонардо да Вити (1451—1519). В области механики Леонардо да Винчи изучил движение падающего тела, движение тела по наклонной плоскости, явление трения и ввел понятие момента силы.  [c.5]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]


Из научных предшественников Галилея можно назвать Леонардо да Винчи и Стевина. Знаменитому художнику Леонардо да Винчи (1452—1519) принадлежат исследования по теории механизмов, трению и движению по наклонной плоскости. Замечательны его попытки построить летательные машины. Труды голландского инженера Симона Стевина (1548—1620) также касаются равновесия тела на наклонной плоскости. Он открыл, быть может под влиянием работ парижского математика Иордана Неморария (XIII в.), закон равновесия трех сил, пересекающихся в одной точке, и вплотную подошел к закону параллелограмма сил в такой форме, в какой мы его знаем теперь.  [c.14]

Законы падения тел Галплей вывел экспериментально, наблюдая качение шаров по наклонным плоскостям. Еще Леонардо да Винчи, великому предшественнику Галилея в области механики, была известна зависимость между длинами (и высотами) наклонных плоскостей и временем, в течение которого с этих плоскостей спускаются шары. Но эти работы Леонардо да Винчи не могли оказать влияния на развитие науки, они стали частично известны лишь после того, как в 1797 г. их опубликовал Вентури. Ко времени их опубликования эти работы имели только историческое значение.  [c.118]

Вероятно, не было случайностью, что Леонардо да Винчи представил в качестве примера совершенной пространственной фигуры геометрическую фигуру подобную фуллерену. Эта фигура была им нарисована для книги Луки Пачели Божественная пропорциональность . Напомним, что во времена Леонардо да Винчи золотую пропорцию назвали божественной.  [c.219]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]

Изучение распределения освещенности на границе между светом и тенью от предметов различной формы уже давно привело ученых к представлению о возможности огибания препятствий светом. Впервые на эти явления обратил внимание Леонардо да Винчи (1452—1519), в 1665 г. более подробно описал Гарибальди. Впрочем, их наблюдения, по-видимому, не были известны Гюгенсу, так как он не воспользовался ими в своей монографии, относящейся к 1678 г.  [c.255]

В эпоху Возрождения великий итальянский ученый Леонардо да Винчи (1452—1519) впервые исследовал законы движения падающих тел и тел, движущихся по наклонной плоскости, установил понятие о моменте силы относительно точки, а также исследовал вопросы трения. Крупнейший вклад в развитие механики, в особенности разделов кинематики и динамики, внес итальянский ученый Галилео Галилей (1564—1642). Он первый сформулировал закон инерции, а в 1633—1635 гг. написал Беседы и математические доказательства о двух новых науках . Одной из них было учение о законах движения падающих тел, другой — наука о сопротивлении, оказываемом твердьгми телами силе, стремящейся их сломить. Поэтому Галилей по праву считается основоположником науки о сопротивлении материалов.  [c.4]

Понятие о моменте силы относительно точки как о произведении величины силы на плечо в механику было введено великим Леонардо да Винчи. Это понятие прекрасно запоминается всеми из чаюшигли мехаш-ку, но у этого прекрасно" есть большой минус. Зашмшш определение момента силы относительно точки, принятое несколько веков назад, изучающие механику не прилагают особых усилий, чтобы усвоить современное понятие о , как величине векторной, и научиться  [c.11]

Всякий раз, когда имеешь дело с водой, прежде всего обратись к опыту, а потом уже рассуждай (Леонардо да Винчи). Для того чтобы изучить какое-либо реальное явление в обстановке, удобной для наблюдений, нужно суметь воспроизвести это явление в лабораторных условиях, подобных натуре. Поэтому в основе экспериментального метода лежат прежде всего законы механического по-л.обия и основанные на них правила моделирования, позволяющие обобщить результаты единичного опыта и распространить их на группу явлений, подобных изучаемому. Обобщение экспериментального материала и теоретический анализ физической сущности явления позволяют более обоснованно строить современные гидравлические теории, которые проверяются затем в натуральных условиях.  [c.15]

Последующие научные работы по гидравлике появились лишь в XVI и XVII веках. Наиболее крупные из них Леонардо да Винчи (1452—1519) — в области плавания тел, движения жидкости по трубам и открытым руслам С. Стевина (1548—1620) — законы давления жидкости на дно и стенки сосуда Г. Галилея (1564—1642) — в области равновесия и движения тел в жидкости Э. Торичелли (1608—1647)—по истечению жидкости через отверстия Б. Паскаля (1623—1662) — о передаче давления жидкости (закон Паскаля) И. Ньютона (1642—1727)—о внутреннем трении в жидкости (закон Ньютона) и сопротивлении тел при движении в жидкости.  [c.4]

Гидравлика — наука древняя. За несколько тысяч лет до наилей эры древними народами, населявшими Египет, Вавилон, Месопотамию, Индию и Китай, были построены плотины, оросительные каналы, водяные колеса. Первым теоретическим обобщением в области гидравлики считается трактат О плавающих телах , написанный за 250 лет до н. э. выдающимся греческим математиком и механиком Архимедом. Им был открыт закон о равновесии тела, погруженного в жидкость, — общеизвестный закон Архимеда. Только через многие столетия после Архимеда, в эпоху Возрождения, наступает новый этап в развитии гидравлики. В XV в. в Италии Леонардо Да Винчи (14Й— 1519) проводит экспериментальные и теоретические исследования в самых различных областях. Он изучает работу гидравлического пресса, истечение жидкости через отверстие и водосливы. В 1586 г. нидерландский математик-инженер Симон Стёвин (1548— 1620) опубликовывает работу Начала гидростатики , в которой решает вопрос о величине гидростатического давления на плоскую фигуру и объясняет гидростатический парадокс . В этот же период итальянский физик, математик и астроном Г а л и л е о Галилей (1564— 1642) устанавливает зависимость величины  [c.258]


В древности и в средние века эти задачи решались методом проб и ошибок, что вело к многочисленным авари.ям и человеческим жертвам. Первые попытки обоснованного научного решения задачи прочности конструкционного элемента совпадают по времени с эпохой великих географических открытий XV—XVII вв. и обусловлены необходимостью создания судов значительной грузоподъемности. Именно к этому периоду относятся опыты Леонардо да Винчи по определению прочности проволок и канатов. Однако основоположником сопротивления материалов как науки принято считать великого итальянца Г. Галилея, который поставил серию специальных экспериментов по оценке прочности изгибаемых деревянных брусьев в зависимости от соотношения размеров и сделал попытку их теоретического осмысления.  [c.8]

Большой вклад в развитие основ гидромеханики был сделан Леонардо да Винчи (1452—1519), Стевином (1548—1620), Галилеем (1564—1642), Паскалем (1623—1662) и Гюйгенсом (1629— 1695).  [c.7]

Основополагающим трудом по гидравлике считают сочинение Архимеда О плавающих телах , написанное за 250 лет до нашей эры и содержащее его известный закон о равновесии тела, погруженного в жидкость. В конце XV в. Леонардо да Винчи написал труд О движении воды в речных сооружениях , где сформулировал понятие сопротивления движению твердых тел в жидкостях, рассмотрел структуру потока и равновесие жидкостей в сообщающихся сосудах. В 1586 г. С. Стевин опубликовал книгу Начало гидростатики , где впервые дал определение силы давления жидкости на дно и стенки сосудов. В 1612 г. Галилей создал трактат Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся , в котором описал условия плавания тел, В 1641 г. его ученик Э. Торричелли вывел закономерности истечения жидкости из отверстий. В 1661 г. Б. Паскаль сформулировал закон изменения давления в жидкостях, а в 1687 г. И. Ньютоном были установлены основные закономерности внутреннего трения в жидкости. Эти ранние работы были посвящены отдельным вопросам гидравлики и только в XVIII в. трудами членов Российской Академии наук М. В. Ломоносова, Д. Бернулли, Л. Эйлера гидравлика сформировалась, как самостоятельная наука.  [c.7]

В конце XV в. Леонардо да Винчи (1452—1519 гг.) написал труд О движении воды в речных сооружениях . В 1586 г. Симон Стевин (1548—1620 гг.) опубликовал книгу Начала гидростатики , в которой дал правила определения силы давления на дно и стенки сосудов. В 1612 г. появился трактат Галилея (1564—1642 гг.) Рассуждение о телах, пребывающих в воде, и о тех, которые в ней движутся . В 1643 г. ученик Галилея Торричелли (1608—1647 гг.) впервые исследовал движение жидкости и установил закон вытекания жидкости через отверстия в сосуде. В 1650 г. французский ученый Блез Паскаль (1623—1662 гг.) опубликовал закон о передаче внешнего давления в жидкости (известный закон Паскаля). В 1687 г. гениальный английский ученый Исаак Ньютон (1643—1727 гг.) сформулировал законы внутреннего трения в движущейся жидкости.  [c.4]


Смотреть страницы где упоминается термин Леонардо да Винчи : [c.154]    [c.8]    [c.9]    [c.52]    [c.449]    [c.98]    [c.297]    [c.118]    [c.159]    [c.14]    [c.151]    [c.9]    [c.108]   
Курс теоретической механики Часть2 Изд3 (1966) -- [ c.315 ]



ПОИСК



Винчи Леонардо да (Leonardo

Леонарда да Винчи

Леонарда да Винчи

Леонардо да Винчи (Leonardo da Vinc

Леонардо да Винчи (Leonardo da Vinci



© 2025 Mash-xxl.info Реклама на сайте