Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодные протекторы из благородных металлов

При анодно-протекторной защите важное значение имеет подбор материала катодного протектора. В качестве таких протекторов используют благородные металлы — платину, палладий, нержавеющие стали для титана в серной и соляной кислотах, специальный воздушный кислородный электрод. Применяют также оксидные и углеграфитные протекторы.  [c.145]

При анодной защите методом катодного легирования в сплав вводят добавки (чаще благородный металл), на котором катодные реакции восстановления деполяризаторов осуществляются с меньшим перенапряжением, чем на основном металле. Например, как было показано ранее, в сплавах титана с небольшим количеством палладия происходит селективное растворение титана, а поверхность непрерывно обогащается палладием. Палладий выступает как протектор и пассивирует сплав. Аналогичный эффект наблюдается и для хромистых сталей при введении в сплав благородных металлов.  [c.294]


Катодные протекторы из благородных металлов  [c.121]

Из рассмотренных работ вытекает, что применение катодных протекторов из благородных металлов эффективно лишь тогда, когда поверхность протектора превышает защищаемую поверхность или, по крайней мере, сравнима с ней. Если учесть размеры защищаемого оборудования и стоимость благородных  [c.125]

Применение катодных протекторов является перспективным направлением в разработке промышленных систем анодной защиты. Промышленное использование их еще недостаточно либо по экономическим причинам (благородные металлы), либо вследствие разрушения во время эксплуатации (оксидные протекторы). Наиболее перспективным материалом для катодных протекторов может быть углеграфит. Предложенный в нашей лаборатории метод совмещения анодной защиты с дополнительным протектором нашел практическое применение (см. гл. 8).  [c.135]

Защиту катодными протекторами осуществляют путём создания электрического контакта защищаемой конструкции с вспомогательным электродом из более благородного металла-платины, палладия, нержавеющей стали, графита, оксидов FejO , РвзОз, МЮ2).  [c.68]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]


Защиту катодными протекторами осуществляют путём создания электрнческого контакта защищаемой конструкции со вспомогачельным электродом из более благородного металла-платины, палладия, нержавеющей стали, фафита, оксидов (Ре О , Fe Oj, ШО2).  [c.98]

Как известно, для защиты металла от коррозии при отсутствии напряжений успешно применяется электрохимическая защита. Она производится с помощью протектора, изготовленного из значительно менее благородного металла, т. е. имеющего значительно более отрицательный электродный потенциал, чем металл защищаемого объекта или анодных покрытий (см. VI—8), или при помощи катодной поляризации защищаемого объекта от внешнего источника тока. Благодаря электрохимической защите местные коррозионные пары на металле должны перестать работать и весь защищаемый объект должен сделаться катодным. Основы электрохимической защиты разработаны и описаны Г. В. Акимовым [1, 2] и Н. Д. Томашевым [151].  [c.179]

В качестве катодных протекторов могут быть использованы благородные металлы (Pt, Pd, Си, Ag), угольный или графитовый электрод, а также электропроводные окислы металлов. Однако в некоторых случаях, как будет показано ниже, даже активно растворяющиеся сплавы, могут вызывать анодную защиту от коррозии более легко пассивирующихся металлов, имеющих достаточно отрицательный потенциал пассивации Е -  [c.153]


Смотреть страницы где упоминается термин Катодные протекторы из благородных металлов : [c.19]   
Смотреть главы в:

Анодная защита металлов от коррозии  -> Катодные протекторы из благородных металлов



ПОИСК



V катодная

Газ благородный

Металлы благородные

Протектор катодный

Протекторы



© 2025 Mash-xxl.info Реклама на сайте