Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Балки на упругом основании — Изгибающие моменты 77 —Поперечные

Вклад в усовершенствованные исследования напряжений в теории корабельных конструкций был сделан двумя русскими инженерами А. Н. Крыловым и И. Г. Бубновым. А. Н. Крылов (1863— 1945 гг.) занимался развитием практических методов исследования колебаний кораблей и методами исследования напряжений в киле, который рассматривался как балка на упругом основании. И. Г. Бубнов (1872—1919 гг.) занимался теорией изгиба прямоугольных пластин, в которых принимались во внимание не только поперечные силы, но также силы, действующие в срединной плоскости пластины. Он также исследовал изгиб прямоугольных пластин, защемленных по всем краям, и подготовил первую удовлетворительную таблицу изгибающих моментов и прогибов для этого сложного случая. Благодаря работе этих двух выдающихся инженеров в России были наиболее современные монографии по теории конструкций кораблей.  [c.659]


Если упругая линия балки при продольно-поперечном изгибе имеет форму упругой линии стержня с опорными устройствами балки, после потери устойчивости, то на основании (XII.52) можно приближенно определять S , как критическую силу для стержня с опорными устройствами балки с той разницей, что в выражение S, должен входить не а Zj— момент инерции относительно главной центральной оси сечения, перпендикулярной оси у.  [c.387]

Метод сечения при изгибе, как и при других видах деформаций, дает возможность определить изгибающий момент и поперечную силу в сечении балки. Вопрос же распределения упругих сил по сечению является вообще задачей, статически неопределимой. Такие задачи, как мы это видели выше, решаются на основании рассмотрения деформаций. При растяжении и сжатии предполагалось, что все волокна материала получают в направлении действия, сил одинаковые относительные деформации отсюда делалось заключение, что напряжения распределяются по сечению равномерно. Вопрос о распределении напряжений при кручении был решен на основании предположения, что относительные сдвиги отдельных элементов поперечного сечения прямо пропорциональны их расстоянию до оси стержня. Выяснение закона распределения напряжений по сечению при изгибе также может быть выполнено только па основании рассмотрения деформаций.  [c.216]

В прикладных задачах статики стержней часто внешние силы, действующие на стержни, зависят от перемещений стержня (или от их первых двух производных). Классическим примером являются стержни на упругом основании (рис. 2.1). При нагружении стержня возникают со стороны основания распределенные силы, зависящие от перемещений (прогибов) стержня. Стержни (вернее конструкции или элементы конструкций, которые сводятся к модели стержня) из разных областей техники показаны на рис. 2.2 — 2.6. Упругий металлический элемент прибора, находящийся в магнитном поле, изображен на рис. 2.2. Сила притяжения (распределенная) зависит от прогибов стержня аналогично случаю балки на упругом основании. Стержень, находящийся на вращаю.щейся платформе (см. рис. 2.3), нагружается силами, зависящими от прогибов, причем в этом случае наряду с нормальной распределенной нагрузкой qy (у) появляется и осевая распределенная нагрузка у). При продольно-поперечном изгибе (см. рис. 2.4) в произвольном сечении стержня возникает момент от осевой силы, пропорциональный прогибу. К этому классу относятся задачи статики трубопроводов, зашолненных движущейся жидкостью. При поперечном изгибе трубопровода (см. рис. 2.5) из-за появляющейся кривизны осевой линии стержня возникают распределенные силы, обратно пропорциональные радиусу кривизны. К этому классу можно причислить задачи, относяшд1еся к плавающим объектам и сводящиеся к схеме стержней (см. рис. 2.6), например понтон.  [c.33]



Смотреть страницы где упоминается термин Балки на упругом основании — Изгибающие моменты 77 —Поперечные : [c.188]    [c.79]   
Справочник машиностроителя Том 3 (1951) -- [ c.0 ]



ПОИСК



350 — Упругость при изгибе

Балка па упругом основании

Балки Изгибающий момент

Изгиб балки на упругом основании

Изгиб балок

Изгиб на упругом основании

Изгиб поперечный

Изгибающие при поперечном изгибе балок

Момент изгибающий

Момент изгибающий при изгибе

Момент изгибающий при изгибе балки

Момент при изгибе

Момент при поперечном изгибе балок

Момент сил упругости

Момент упругие

Основание

Поперечная упругость

Упругое основание



© 2025 Mash-xxl.info Реклама на сайте