Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предельный переход в статистической физике

В статистической физике рассматриваются системы из большого числа частиц, поэтому возникает задача нахождения асимптотических выражений для при Л оо. Такой предельный переход может быть совершен различными способами в зависимости от того, какие физические свойства системы необходимо исследовать. Имея в виду исследование объемных свойств и желая исключить влияние поверхности, перейдем к термодинамическому пределу, полагая, что, когда УУ-уоо, граничная поверхность уходит на бесконечность, объем V неограниченно увеличивается, а плотность  [c.99]


С развитием статистической физики все яснее становится представление о том, что для статистического поведения системы важную и, по-видимому, определяющую роль играет фактор наличия большого числа частиц в системе. В монографии Н. Н. Боголюбова Динамические проблемы статистической физики [14] были показаны пути строго математического обоснования предельного перехода в статистической физике при использовании канонического ансамбля Гиббса. Значительно позже Рюэль [16] предложил аналогичный подход к исследованию уравнений  [c.212]

Переход к новому типу каузальной связи, который условно можно было бы назвать <(Квантовым и который характерен для квантовой (нерелятивистской и релятивистской) механики, где уже классические величины заменяются операторами, где вероятность состояния индивидуальной частицы и индивидуального акта взаимодействия имеет, как известно, совсем иной смысл, чем вероятность состояния ансамбля в классической статистической механике, приводит к тому, что положение и роль принципа Гамильтона оказываются в квантовой механике совершенно иными, чем в классической физике. Важная историческая роль, сыгранная принципом и оптико-механической аналогией в начальной стадии формирования волновой механики, объясняется не только тем, что существует реальная связь и предельный переход от механики атома к классической физике, но также и тем, что существуют общие черты в типах каузальной связи макро- и микрокосмоса. Но именно потому, что для энергии и времени, так же как для импульса и соответствующей координаты, в квантовой механике имеют место перестановочные соотношения, а сами они являются уже операторами, классический интеграл Гамильтона (и принцип наименьшего действия) имеет в ней не-  [c.873]

Фазовый переход в критич. точке (предельной на кривой равновесия фаз) имеет много общего с фазовым переходом II рода. В критич. точке фазовый переход происходит в масштабах всей системы. Флуктуационно возникающая новая фаза по своим св-вам бесконечно мало отличается от св-в исходной фазы. Поэтому возникновение новой фазы не связано с поверхностной энергией, т. е. исключается перегрев (или переохлаждение) и фазовый переход не сопровождается выделением или поглощением теплоты, что характерно для фазовых переходов II рода. Знание св-в в-в в К. с. (см. Критические явления) необходимо во мн. областях науки и техники при создании энергетич. установок на сверхкритич. параметрах, установок для сжижения газов, разделения смесей и т. д. ф Фишер М., Природа критического состояния, пер. с англ.. М., 1968 Б р а у т Р., Фазовые переходы, пер. с англ., М., 1967 Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 3 изд., ч. 1, М., 1976.  [c.333]


Феноменологический и физический пути построения критериев. Описанный выше подход к построению критерия для оценки границы перехода материала в предельное состояние имеет чисто феноменологический характер, никак не связанный с дискретностью строения материи поэтому и сами критерии имеют чисто феноменологический характер. В отличие от феноменологического, мыслим и физический подход к решению проблемы. Однако даже в случае линейного напряженного состояния или чистого сдвига теоретически находить характеристики, определяющие переход материала в предельное состояние, удается лишь для монокристаллов идеальной структуры. В случае же наличия многообразных дефектов структуры монокристалла, а тем более в случае поликристаллического тела (металла), проблема до сих пор не разрешена надежно даже для отмеченных выше элементарных однородных напряженных состояний. В настоящее время предпринимаются многочисленные попытки в направлении построения физических теорий с использованием методов математической статистики и теории вероятностей, к сожалению, пока далекие от возможности непосредственного широкого их использования в практических расчетах. Больше других удалось исследовать вопросы хрупкого разрушения, в том числе рассмотреть масштабный фактор и изменчивость прочности, а также явление усталости. Однако будущее принадлежит именно статистическим теориям, описывающим физику явления с единых позиций.  [c.539]

Предельный переход в статистической физике — 212 Принципы вариационные термодинамики необратимых процессов — 16 Принцип Кюри — 14 Принцип Ле-Шателье — 21 Принцип Пригожияа о минимуме производства энтропии — 19 Проблема Больцмана — 125  [c.240]


Неравновесная термодинамика и физическая кинетика (1989) -- [ c.212 ]



ПОИСК



Предельный переход

Предельный статистический переход

Статистическая физика



© 2025 Mash-xxl.info Реклама на сайте