Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность алюминиевых сплавов при контактных напряжениях

В работе [86] была исследована циклическая прочность двух типов сварных листовых соединений аргонодуговая сварка встык с присадкой и контактная шовная сварка встык с двусторонними накладками. Испытание образцов велось плоским симметричным изгибом. Разрушение образцов происходило по месту сплавления металла шва с основным металлом, т. е. по месту конструктивного концентратора напряжений. Для того чтобы оценить раздельно роль внешних концентраторов и роль самой сварки ( внутренний концентратор) на усталостную прочность сварных соединений титана, были определены пределы выносливости образцов без усиления и накладок, которые перед циклическим нагружением срезались. В этих испытаниях определено снижение циклической прочности только в результате действия структурных или внутренних концентраторов. Как видно из рис. 69, на котором представлены основные результаты работы, предел выносливости таких образцов оказался еш,е более низким, чем у образцов с усилением эффективный коэффициент внутренней концентрации для аргонодуговой и контактной сварки оказался соответственно 1,74 и 3,25. Все образцы этих серий разрушались по шву. Сопоставление усталостной прочности сварных соединений титана с подобными соединениями других металлов (стали, алюминиевые сплавы) показало, что они имеют близкие значения отношений предела усталости сварного соединения и основного металла. Эксперименты показали, что пределы усталости стыковых соединений титановых листов при изгибе, выполненных ручной аргонодуговой сваркой и контактной сваркой, составляют соответственно 77 и 65% от усталостной прочности основного металла причем снижение предела выносливости идет в основном за счет внутренних структурных дефектов сварного шва.  [c.150]


Фретинг-эффект, Особое значение в усталостной прочности титановых сплавов имеет фретинг-эффект, или контактная коррозия, в местах сопряжения. Наличие контактного трения при циклическом нагружении у всех металлов приводит к заметному снижению усталостной прочности, особенно в коррозионных средах. Титановые сплавы в этом отношении мало отличаются от сталей, близких к ним по прочности [761. Возникающее контактное трение (в местах заделок, прессовых посадок, креплений и т. п.) резко снижает усталостную прочность, действуя подобно концентратору напряжений. Степень снижения усталостной прочности в основном зависит от сопряженного материала, вызывающего фретинг-эффект, удельного давления в месте сопряжения и окружающей среды. Удельное давление [761 оказывает сильное влияние только при его низких значениях. В прочных креплениях или плотных посадках при удельных давлениях более 3—5 кгс/мм усталостная прочность мало изменяется. Так, по данным работы [76], прессовая посадка втулки с удельным давлением 5 кгс/мм снижает усталостную прочность технически чистого титана с 32 до 11,2 кгс/мм . Дальнейшее увеличение удельного давления посадки до 20 кгс/мм снизило предел усталости до 10,3 кгс/мм . В среднем предел усталости при наличии фретинг-эффекта ((т /) у титановых сплавов на воздухе при контактировании с однородным сплавом составляет 20—40% от исходного предела усталости, т. е. (tI i = (0,2- -0,4)(Т 1. При контактировании с более мягкими материалами (медные, алюминиевые или магниевые сплавы) это соотношение повышается и достигает ali = 0,6(T i. Повышения значения до (O,5-hO,6)0 i можно добиться анодированием поверхности или покрытием пленкой полимеров, т. е. благодаря улучшению условий трения.  [c.154]

В этом разделе выводятся уравнения, которые описывают поведение гладкого образца в условиях контактной коррозии. В области контакта имеется местное увеличение переменных напряжений, такое же, какое бывает при концентрации напряжений геометрического типа. Для этого случая эффективный коэффициент концентрации напряжений Кл имеет некоторую характерную высокую величину. Если контактная коррозия развивается на поверхности геометрического выреза, уменьшение прочности из-за совместного действия выточки и коррозии может выражаться некоторой общей величиной эффективного коэффициента концентрации /Са- Эксперименты с алюминиевыми сплавами показали, что нет ничего необычного в том, что этот коэффициент имеет величину порядка 10, т. е. для очень боль-  [c.217]


Большинство алюминиевых сплавов хорошо свариваются контактной сваркой. Современное оборудование и технология обеспечивают соединение деталей из алюминиевых сплавов малой и средней толщины (рис. 3.20). Прочность на отрыв из-за высокой концентрации напряжений заметно ниже прочности на срез.  [c.102]

Хотя контактная точечная электросварка является одним из передовых методов соединения металлов, однако этот метод имеет существенные недостатки, а именно относительно невысокую усталостную прочность из-за наличия концентрации напряжений, не-герметичность соединения и невозможность защиты от коррозии алюминиевых сплавов анодированием, так как электролит, оставшийся в неплотностях соединения, может вызвать коррозию.  [c.93]

Коррозионные и усталостные эффекты действуют одновременно для части цикла нагружения. Если на вал надета с натягом деталь, то при усталостных испытаниях на кручение с изгибом кривизна вала может стать причиной местного отделения вала на поверхности, имеющей растягивающие напряжения. Это приводит к ограничению поверхности контакта на сжатой стороне и уменьшению повреждений из-за контактной коррозии, имеющих большую величину, чем в случае (1). Этот эффект зависит от прогиба и геометрии детали. Усталостная прочность при кручении с изгибом может уменьшиться на 507о по сравнению с гладкими образцами, не находившимися в условиях контактной коррозии, как было показано Кортеном [471] для алюминиевого сплава, а также для стали с высоким пределом прочности при растяжении.  [c.217]

Коррозионные и усталостные эффекты действуют одновременно для целого цикла нагружения. Совместное действие концентрации контактных напряжений и общих напряжений на протяжении целого цикла приводит к значительно большим повреждениям, чем в обоих приведенных выше случаях. Феннер и Филд нашли, что усталостная прочность может понизиться на 80 7о для образцов из алюминиевого сплава, испытанных при этих условиях (см. разд- 8.3). Подобные условия часто встречаются при осевом нагружении болтовых соединений, проушин и стержНей болтов.  [c.217]

Значительные проблемы в этой области связаны с коррозией под напряжением, при трении, с коррозионной усталостью и растрескиванием. Однако коррозия наружных и особенно скрытых поверхностей фюзеляжа самолета весьма актуальна. В замкнутых объемах и профилях фюзеляжа, как и в полостях кузовов автомобилей, влага задерживается длительное время. Это объясняется следующими причинами высокой относительной влажностью (до 90% и выше) в непроветриваемых, труднодоступных частях центроплана высокой температурой в этих объемах (летом на 10—15°С выше температуры окружающего воздуха) попаданием конденсата и агрессивных жидкостей конденсацией воды в топливных баках и т. д. Наиболее распространенными являются контактная, щелевая и нитевидная коррозии, расслаивающая коррозия, ииттинг- и фреттинг-коррозии. Продукты коррозии легких сплавов имеют больший объем, чем сам металл и могут наносить значительный ущерб прочности конструкций. Коррозия алюминиевых сплавов в щелях в 10—12 раз выше коррозии на поверхности потенциал в щели на 200—300 мВ сдвинут в отрицательную область [128].  [c.202]

Наиболее часто для изготовления конструкций применяются алюминиевые сплавы следующих марок алюминиево-марганцовистые АМц алюминиево-магниевые АМг с содержанием 2,5% Mg АМгб с содержанием б% Mg авиаль закаленный и естественно состаренный АВТ с повышенной пластичностью и коррозийной стойкостью более редко применяется дюралюминий Д16 с добавкой Си сплав В92 с добавками Mg и 2п, и некоторые другие. Алюминиевые сплавы хорошо свариваются дуговой сваркой с защитой флюса, а также нейтральных газов аргона и гелия и контактным способом. Исключение представляют сплавы дюралюминия, которые свариваются преимущественно контактны-М и машинами. Многочисленные исследования подтвердили возможность получения соединений с высокими механическими и антикоррозийными свойствами. Для алюминиевых конструкций, пр именяе-мых в строительстве, разработаны методы проектирования и расчеты прочности сварных соединений. В табл. 59 приведена характеристика механических свойств сплавов, наиболее часто применяемых в строительных конструкциях. Величины допускаемых напряжений (расчетных сопротивлений) для основного металла приведены в табл. 60.  [c.531]



Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.481 ]



ПОИСК



Алюминиевые прочность

Контактные напряжения и контактная прочность

Контактные сплавы

Напряжения контактные

Прочность алюминиевых сплавов

Прочность алюминиевых сплавов механическая при контактных напряжениях

Прочность контактная

Прочность при контактных напряжениях



© 2025 Mash-xxl.info Реклама на сайте