Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Профиль характер задней кромки

Заметим, что, как уже указывалось (гл. II), вследствие нереальности такого давления безотрывное обтекание становится невозможным, и с передней острой кромки пластины происходит срыв струй. Поэтому применение описанных выше математических методов для определения обтекания невязким потоком пластины или других профилей с острыми передней и задней кромками, строго говоря, носит несколько условный характер. Исключение составляет только случай обтекания профиля под таким углом атаки, при котором точка разветвления струй совпадает с острой передней кромкой ). В этом случае обе острые кромки, передняя и задняя, лежат на линии раздела потоков, обтекающих верхнюю и нижнюю стороны профиля, и струи жидкости плавно входят и сходят с него.  [c.27]


Значение на задней кромке зависит от характера обтекания и меняется в пределах 1,3—1,4 для продольно обтекаемой пластины и 1,8—2,0 для толстых профилей.  [c.342]

Наиболее простой вихревой системой, заменяющей крыло конечного размаха, будет система, состоящая из одного несущего вихря с напряженностью Г (рис. 166) и двух параллельных свободных вихрей с такой же напряженностью, сбегающих с концов крыла и простирающихся до бесконечности (необходимость последнего обстоятельства вытекает из теоремы о том, что вихревая нить нигде внутри жидкости не может окончиться и должна состоять все время из одних и тех же частиц эта теорема имеет чисто кинематический характер и поэтому одинаково приложима как к свободному вихрю, так и к системе, состоящей из несущего и свободных вихрей). Однако в действительности подъемная сила отдельных элементов (профилей) крыла по мере приближения к концам крыла уменьшается, поэтому указанная вихревая система является лишь первым приближением. Для получения системы вихрей, более точно заменяющей крыло конечного размаха, следует наложить друг на друга очень большое число упрощенных систем, каждая из которых имеет бесконечно малую напряженность и свой размах (рис. 167). Такая система вихрей дает приближенную картину поверхности раздела, сбегающей с задней кромки крыла, однако без учета тех изменений, которые эта поверхность испытывает по мере удаления от крыла вследствие возрастающего свертывания. Чем меньше подъемная сила, тем медленнее происходит свертывание поверхности раздела, и в предельном случае очень малой подъемной силы этим свертыванием при определении поля скоростей вблизи крыла можно полностью пренебрегать.  [c.284]

Распределения давления и его пульсаций. В качестве иллюстрации на фиг. 1 приведено распределение давления по верхней поверхности среднего сечения (г = 0) скользящего крыла при закритическом обтекании (М = 0.808, Ке = 5.7 10 ) на различных углах атаки (а = 0-5.25°). Величина рассчитана с учетом скольжения (% = 24°). Эпюры давления в передней части профиля (х < 0.5) имеют практически "полочный" характер. Местная сверхзвуковая зона при а > О замыкается скачками уплотнения. Условно за положение скачка уплотнения (х ,,) принято начало резкого роста статического давления. Отметим, что вблизи задней кромки верхней поверхности (х = 0.95, = Ср ) при углах атаки а > 3° наблюдается, согласно [3], ярко выраженное отрывное обтекание (Ср < 0), обусловленное отрывом, вызванным скачком уплотнения (волновым отрывом, [4]). Од-  [c.115]


Ранее было отмечено, что характер обтекания цилиндра зави- сит от величины циркуляции. Как видно из рис. IX.4, каждому значению циркуляции соответствуют свои критические точки. Следовательно, если в физической плоскости z не наложить каких-либо ограничений, то критические точки могут разместиться в произвольных точках обвода профиля. Если заднюю критическую точку расположить не на задней кромке, а на профиле выше или ниже точки Ai, то на острой кромке в точке Ах будут возникать бесконечно большие скорости. С. А. Чаплыгин и Н. Е. Жуковский, имея в виду невозможность возникновения бесконечно большой скорости в какой-либо точке профиля, предложили считать практически осуществимым лишь такое обтекание, при котором поток плавно с конечной скоростью сходит с заостренной задней кромки профиля. Это предложение было впоследствии названо постулатом, Жуковского—Чаплыгина. Опыт показывает, что такое обтекание 1профиля может происходить не при одном значении угла атаки, а в некотором интервале углов атаки, а следовательно, и циркуляции.  [c.210]

Чтобы сохранить общий характер задачи, рассмотрим профиль обобщенной формы с закругленной задней кромкой (профиль тица Карафоли).  [c.138]

В связи с ростом скоростей полета самолета широкое применение сейчас находят стреловидные крылья и крылья малого удлинения различной формы в плане. Условия обтекания профиля в сечении таких крыльев как при малых, так и при больших скоростях могут суш,ественно отличаться от условия плоскопараллельного потока из-за пространственного характера течения. В ряде работ ЦАГИ были установлены основные закономерности перестройки обтекания профиля в системе стреловидных крыльев и крыльев малого удлинения. В. В. Струминским, Н. К. Лебедь и К. К. Костюком (1948) путем экспериментального исследования распределения давлений в различных сечениях стреловидных крыльев при малых скоростях было показано, что наиболее суш,ественным изменениям, обусловленным трехмерным характером течения, подвергается обтекание профилей, установленных в корневых и концевых сечениях стреловидного крыла, В корневом сечении крыла с прямой стреловидностью область повышенных местных скоростей смеш ается вперед к носку профиля по сравнению с эпюрой скоростей такого же профиля в условиях плоскопараллельного обтекания в концевом сечении происходит обратная перестройка, т. е. область повышенных местных скоростей смеш,ается к задней кромке профиля. В срединных сечениях стреловидного полукрыла большого удлинения условия обтекания близки к условиям на скользящем крыле бесконечного удлинения. В работе Я. М. Серебрийского и М. В. Рыжковой (1951) с помощью метода источников и стоков проводится приводящее к тем же выводам, что и эксперимент, теоретическое исследование симметричного обтекания профиля в системе тонкого крыла произвольной формы в плане при обтекании его потоком идеальной несжимаемой жидкости. Учет пространственного обтекания стреловидного крыла приводит к необходимости применения профилей различной формы на отдельных участках крыла. Такие специальные профили создавались для корневых и концевых отсеков стреловидного крыла (Г. П. Свищев, Я. М. Серебрийский, К. С. Николаева, М. В. Рыжкова). Существенное изменение местных скоростей происходит и на крыльях малого удлинения. При уменьшении удлинения за счет пространственности обтекания уменьшаются возмущения на поверхности профиля, причем для малых удлинений это уменьшение возмущений может быть весьма существенным не только в концевых, но и в средних сечениях крыла.  [c.89]

Анализ зависимостей пульсаций статического давления по углу атаки, р а) в диффузорной части профиля крыла (х > дозвуковые местные скорости, Ср < Ср,г ) при фиксированных значениях координаты х (фиг. 6, а) показывает, что моменту возникновения отрыва пограничного слоя соответствует начало резкого роста пульсаций давления (а = а р). При этом на углах атаки а > в отрывной зоне пульсации давления имеют тенденцию к увеличению по мере продвижения к задней кромке (например, М = 0.808, а > 3°, л = 0.7-0.9, фиг. 6, а). Это обстоятельство и является причиной изменения характера зависимости р х) при а, М = onst на режимах отрывного обтекания (например, М = 0.808, а = 4°, фиг. 2).  [c.118]


Первые три профиля отличаются простотой изготовления. Преимущество треугольной и ромбовидной форм заключается в придании оперению большей жесткости по сравнению с трапециевидной формой. С точки зрения аэродинамики некоторой выгодой обладает трапециевидный профиль, так как при одинаковой с треугольным и ромбовидным профилями толщине он может обеспечить меньшее сопротивление и большее аэродинамическое качество. У чечевицеобразного профиля сопротивление еще меньше, чем у трапециевидного (при одинаковой относительной толщине). Выбором соответствующих углов заострения передней и задней кромок можно добиться хорощей жесткости крыла. Увеличивая углы заострения передней кромки, следует учитывать возможность возрастания волнового сопротивления, а также повышенную чувствительность режима обтекания к изменению углов атаки. Так, с увеличением углов заострения уменьшаются углы атаки, при которых наступает режим обтекания с отошедшей волной, когда резко возрастает сопротивление, нарушается безотрывный характер течения, что вызывает снижение подъемной силы и, как следствие, ухудшение устойчивости.  [c.63]

Наблюдения за характером изменения профиля режущей кромки во времени показали, что для твердосплавных пластинок В Кб и ВК2 характерно незначительное изменение всего профиля по передней грани, которое сопровождается налипами очень деформированных частиц металла. Преобладающим у них был износ по задней грани, который развивался очень бурно (см. рис. 5). Нужно отметить, что микрогеометрия поверхности при этом не ухудшилась, а наоборот, с течением определенного времени начинала улучшаться. Это объясняется тем, что при определенной величине износа по. задней грани резание сопровождалось процессом вдавливания микронеровностей, аналогичным процессу обкатывания поверхности роликом. Поэтому процесс резания в отдельных случаях был неустойчивым, внешним признаком чего следует считать шум шестерен в коробке скоростей станка (это явление связано с резким возрастанием сил, действующих на заднюю грань инструмента) значительные отжатия стола, а также захватывание уже обработанной поверхности рез-  [c.28]


Смотреть страницы где упоминается термин Профиль характер задней кромки : [c.98]    [c.135]    [c.816]    [c.278]   
Теоретическая гидродинамика (1964) -- [ c.187 ]



ПОИСК



Задний ход

Кромка

Кромка задняя

Профиль, задняя кромка



© 2025 Mash-xxl.info Реклама на сайте