Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние ультразвука резонансное

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Усиление рассеяния при резонансе объясняется тем, что, как уже говорилось, рассеянное поле образуется излучением ультразвука частицами, совершающими вынужденные колебания в поле первичной волны амплитуда же вынужденных колебаний в резонансе резко возрастает в число раз, равное величине добротности колебательной системы (см. гл. УП1), соответственно возрастает и интенсивность рассеяния. Для пульсационных колебаний воздушного пузырька в воде, например, это приводит к увеличению эффективного сечения рассеяния примерно на 12 порядков. Отсюда и сильное рассеяние ультразвука при возникновении в жидкости кавитации, когда, как мы видели, всегда находятся или образуются пузырьки резонансных размеров. Резонансное рассеяние успешно используется в гидроакустической эхо-локации рыбных косяков роль резонансных пузырьков в этом случае играют плавательные пузыри рыб. Резкое увеличение рассеяния при резонансе (в том числе и обрат1юе рассеяние, которое регистирируется эхо-локатором) позволяет уверенно определять и размеры рыб, и мощность косяка.  [c.169]

Ниже критич. темп-ры Т , (наир., Кюри точка для ферромагнетика или Нееля точки для антиферромагнетика) динамика намагниченности носит преимущественно не диффузионный, а волновой характер (см. Спиновые волны). Однако в условиях сильного затухания и малого времени жизни магпонов (Т близко к Т ) волновая динамика намагниченности сменяется диффузионной, что проявляется, в частности, в виде т. н. центрального (квазиупругого) пика в сечении критнч, магн, рассеяния нейтронов. Выше критич. темп-ры С. д. становится основным механизмом пространственного выравнивания неоднородной намагниченности. Особенности С. д. в парамагнитной области (Т > Г ) магнитоупорядоченных веществ по сравнению со С. д. в обычных парамагнетиках проявляется в критическом замедлении (аномальное возрастание вблизи времён магнитной релаксации). Аналогичными свойствами обладают н др. кинетич. и резонансные характеристики (напр., затухание ультразвука в магнетиках, ширина линии ЭПР и др.).  [c.632]

Отмечая, что ультразвуком можно успешно сваривать не только алюминиевые фольги, но и такие материалы, как медь, никель, титан, цирконий, он указывает на зависимость прочности соединений от размеров изделия. В работе [60] последовательно изменялось расстояние между свариваемым листом алюминиевой фольги размером 50x10 7x0,5 (и 0,3) мм и дополнительным зажимом (режим сварки = 20 кГ, = 1,0 сек). Установлено, что отношение площадей сварных точек к контактной площади составило 20—90% с шагом, равным 40 мм. Высказано предположение, что это изменение прочности объясняется возникновением резонансных состояний и вследствие этого дополнительным рассеянием энергии.  [c.58]



Смотреть страницы где упоминается термин Рассеяние ультразвука резонансное : [c.200]    [c.120]   
Основы физики и ультразвука (1980) -- [ c.168 , c.169 ]



ПОИСК



Рассеяние ультразвука

Рассеяние ультразвука рассеяния

Резонансные

Ультразвук



© 2025 Mash-xxl.info Реклама на сайте