Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Формулы преобразований при повороте напряжений

Граничные условия, выражения, определяющие главные напряжения и формулы преобразования при повороте координатных осей для усредненных значений напряжений, совпадают с  [c.71]

Для определения величин напряженно-деформированного состояния в координатах (р, 7) /-е приближение преобразуем следующим образом левые части формул (10.20) выразим, использовав формулы преобразования при повороте на угол i 3, через составляющие в системе координат г, 0) и функции угла г затем, учитывая (3.38) и (10.19), представим левые части как функции р и 7. Раскладывая таким образом вычисленные левые части выражений (10.20) в ряды по е и собирая коэффициенты при 8 , получаем выражения, аналогичные (3.42). Эти выражения подставляем в условия (10.22) и получаем граничные условия /-Г0 приближения. При этом общее решение уравнений (10.21) в полярных координатах с учетом условий затухания на бесконечности имеет вид  [c.233]


Соотношения типа (1. ) называются формулами преобразования компонент тензора напряжений при повороте координатных осей. Заметим, что вообще всякая физическая величина, определяемая шестью компонентами, которые удовлетворяют формулам преобразования при повороте осей координат типа (1.2), называется симметричным тензором второго ранга. Примерами таких величин являются деформация тела, инерция твёрдого тела с одной неподвижной точкой и другие ). Как числа и как векторы, тензоры можно складывать, вычитать, умно-  [c.19]

Выражения (3.42) получаем следующим образом а) через Ф, Ч , имеющие вид (3.40), определяем о , Оее, Огн по формулам (2.18) б) подставляем эти выражения в формулы преобразования компонент тензора напряжений при повороте координатных осей  [c.93]

Формулы преобразования компонент тензора напряжений в точке тела при повороте координатных осей  [c.30]

Формулы преобразования напряжений при повороте осей  [c.114]

Формулы преобразования компонентов напряжений при повороте системы координатных осей. Даны матрицы  [c.412]

Формулы преобразования компонентов напряжений и деформаций при повороте координатных осей (см. рис. 1,6.2)  [c.68]

Учитывая выражения (3.52), а также формулы преобразования компонент тензоров и векторов при повороте системы координат на угол if), получаем соотношения для составляющих тензора напряжений  [c.67]

Компоненты тензора напряжений ац в точке, определенные в декартовых координатах х, Xi, хз, изменяются при повороте системы координат согласно закону преобразования компонент аффинного тензора второго ранга (рис. 1.8). Формулы преобразования координат имеют вид  [c.18]

Таким образом, хотя и введенная в 6 гл. I матрица Г и введенная выше матрица S определяют симметричные тензоры второго ранга, однако эти два тензора заданы нами в двух по существу различных системах координат. Несколько ниже тензор напряжения будет преобразован к декартовой системе координат точек тела до деформации. Тогда его компоненты при повороте координат осей будут преобразовываться по закону, идентичному формулам I (6.4). Можно было бы поступить и наоборот—-определить тензор деформации в декартовой системе координат точек тела после деформации. Однако последнее было бы равносильно отказу от материальных координат и переходу к пространственным координатам, что было признано в начале первой главы нерациональным.  [c.64]

Закон преобразования компонент тензора напряжений при повороте декартовой системы осей дается формулами (1.3.6). Их можно получить также, исходя из зависимости Коши (1.4.5). Совместим N с единичным вектором тогда k s проекции на старые оси квазивектора — напряжения на площадке с нормалью — по (1.4.6) будут  [c.28]


Выведенные в разд. 2.5 формулы преобразования напряжений были первоначально получены для плоского напряженного состояния затем (разд. 2.7) стало ясно, что их можно использовать для элемента, находящегося в трехосном напряженном состоянии, при условии, что элемент был поьернут относительно одной из осей координат. Данная процедура, относящаяся к деформациям, будет следовать той же схеме. Формулы преобразо-вания деформаций будут выведены для случая плоского деформированного состояния, но останутся в силе для трехосного деформированного состояния при условии, что поворот в новое положение будет происходить относительно одной из осей координат.  [c.88]

В случае изотропного тела формулы (а) не должны изменяться при любых преобразованиях координат. Преобразуя координаты путем поворота осей на 180°, можно установить, что нормальные напряжения не связаны с угловыми деформациями, а касательные напряжения не связаны с линейными деформациями. Кроме того, касательные напряжения не связаны с угловыми деформациями в других плоскостях. После поворотов осей на 90° и на произвольный угол число упругих постоянных сокращается до  [c.32]


Смотреть страницы где упоминается термин Формулы преобразований при повороте напряжений : [c.101]    [c.139]    [c.168]    [c.78]    [c.19]   
Механика материалов (1976) -- [ c.62 , c.87 ]



ПОИСК



Поворот

Преобразование поворота

Формула поворота

Формулы преобразований при повороте

Формулы преобразования

Формулы преобразования компонент тензора напряжений в точке тела при повороте координатных осей

Формулы преобразования напряжений при повороте осей вокруг одного из главных направлений. Максимальные касательные напряжения



© 2025 Mash-xxl.info Реклама на сайте