Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Межкристаллитная коррозия влияние структуры сплавов

Никель и некоторые из его сплавов, по добно большинству других металлов и сплавов, в определенных условиях могут подвергаться межкристаллитной коррозии. На практике межкристаллитная коррозия ии келевых сплавов обычно встречается вокруг сварных соединений н бывает резуль татом влияния самого процесса сваркн яа структуру материала в этих областях. Сплавы, подвергающиеся другим столь ж неблагоприятным термообработкам, также склонны к этому виду коррозии. Составы большинства промышленных никелевых сплавов тщательно контролируются с тем, чтобы свести к минимуму вероятность возникновения межкристаллитной коррозии в сварных изделиях в процессе эксплуатации.  [c.145]


Появление в структуре сплавов Р-фазы снижает сопротивление коррозии. Это снижение зависит не только от количества, но и от формы выделения Р-фазы грубые первичные выделения оказывают более неблагоприятное влияние. Коррозия усиливается в тех местах отливок, где имеется рыхлота, за счет развития межкристаллитной коррозии.  [c.358]

Разные механические свойства участков зоны термического влияния и металла шва, получаемые при сварке плавлением термически упрочняемых алюминиевых сплавов, подобных дуралюмину, приводят к тому, что прочность сварных соединений по сравнению с основным металлом снижается в среднем на 50—60%, причем одновременно уменьшается и пластичность. Различия в структурах различных участков также снижают коррозионную стойкость металла и усиливают его склонность к межкристаллитной коррозии.  [c.386]

При этом большинство легирующих добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения при температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метаста-бильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]

В работе [832 ] изучены структура и свойства и влияние кремния на склонность хромоникельмолибденовых сплавов типа хастелой С (ЭП375) к межкристаллитной коррозии.  [c.617]


Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаияя тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная  [c.85]

В зависимости от типа сплава, технологии производства и характера примесей межкристаллитные границы более или менее отличаются от внутренней части зерен как составом, так и гетерогенной структурой с высокой степенью дисперсности. Эти особенности межкристаллитных границ уже сами по себе меняют условия протекания коррозии. Межкристаллитная внутренняя адсорбция может иметь как положительное, так и отрицательное значение (но часто решающее) для возникновения склонности к межкристаллитной коррозии. Межкристаллитная внутренняя адсорбция углерода по границам зерен нержавеющей стали ведет к быстрому выделению карбидов хрома при нагреве в области критических температур, и этим обедняет границы зерен хромом (см. гл. 3.4.1). Обогащение границ зерен углеродом было подтверждено у стали Х18Н12, как авторадиографическим измерением с использованием радиоактивного углерода (С 4) [28, 44], так и точным рентгенографическим анализом изменений параметров решетки аустенита [6]. Однако существуют примеси, которые также адсорбируются на границах зерен, но при этом исключают неблагоприятное влияндр углерода. Принципиально можно уменьшить склонность к межкристаллитной коррозии прибавлением таких примесей, которые уже при относите дао малом их содержании в сплаве существенно повышают коррозионную стойкость или способность к пассивации. Тот факт, что поверхности излома и карбиды МеазСв, выпадающие по границам зерен легированной молибденом стали, обогащены этим элементом [6], подтверждает приведенное выше высказывание и позволяет объяснить благоприятное влияние молибдена на снижение склонности нержавеющих сталей к межкристаллитной коррозии. Кроме углерода, существуют еще другие примеси, которые своей внутренней адсорбцией на границах кристаллов ускоряют межкристаллитную коррозию. Этим примесям (например, никелю) должно быть уделено особое внимание. Если их присутствие необходимо для сохранения  [c.44]

Схема всего процесса внутренней адсорбции, с которой связано появление склонности к межкристаллитной коррозии, может быть представлена следующим образом. После выдержки сплава при высокой температуре, когда межкристаллитные границы обогащаются какой-либо примесью, следует относительно быстрое охлаждение, препятствующее обратной диффузии примесей из области границ в зерна. Благодаря этому по границам зерен создается значительно большее пересыщение твердого раствора, чем в самом зерне. Из пересыщенного раствора при высоких или низких температурах выделяются вторичные фазы. Гетерогенность структуры может быть вызвана также выдержкой сплава при немного повышенной температуре, когда уже возможна диффузия и рост зародышей новой фазы в переходной зоне, пересыщенной одним из элементов, входящих в состав этой фазы. Образование такой структуры является причиной не только межкристаллитной коррозии, но и склонности к хрупкому межкристаллитному излому [44], так как оба эти явления связаны с выпадением карбидов по границам зерен. Так же как на границе зерен, внутренняя адсорбция может происходить и в местах структурных негомогенностей внутри зерен, например на плоскостях двойникования. В том, что указанные структурные негомогенности оказывают влияние на коррозионную стойкость, можно убедиться по фигурам травления таких структур или наблюдая явления, происходящие при коррозионном растрескивании [248]. Внутренняя адсорбция, связанная с составом сплава и его термообработкой, имеет для изучения коррозии очень важное значение и может оказывать решающее влияние на склонность не только к межкристаллитной, но и к другим видам коррозии.  [c.45]


Транскристаллитное коррозионное растрескивание. под напряжением, к которому чувствительны аустенитные сорта, также можно отнести к селективной коррозии. Это явление подробно обсуждается в разделе 8.3, Коррозионные среды, вызывающие подобные разрушения, очень специфичны чаще всего это хлориды. Для начала растрескивания необходимо критическое сочетание уровня напряжения и концентрации хлоридов, а на практике такие разрушения в большинстве случаев происходят в горячем металле. Все аустенитные стали (см, табл, 1,8) чувствительны к растрескиванию примерно в одинаковой степени. Ферритные стали (см, табл. 1,7), судя по всему, не склонны к растрескиванию, но недавно было замечено, что легирование никелем, медью или кобальтом может вызвать чувствительность к растрескиванию и в ферритной структуре, Мартеи-ситные сорта в смягченном состоянии ие поддаются транскристаллитному растрескиванию, однако в упрочненном состоянии такое растрескивание под напряжением может начаться, причем его вероятность, как правило, возрастает при повышении прочности материала. Мнения о том, является ли транскристаллитное растрескивание в этом случае в действительности селективной коррозией, или это в основном лишь из форм хрупкого разрушения, расходятся (хотя для инженера решение этого вопроса не столь существенно). Коррозионные среды, в которых может происходить такое разрушение, не столь специфичны, как для аустенитных сталей. Исчерпывающий обзор межкристаллитной коррозии сплавов Ре— N1—Сг с учетом влияния напряжений дан в работе Коуэна и Тедмана [8а].  [c.33]

Содержание углерода в сплаве для большииства случаев межкристаллитной коррозии, особенно нержавеющих сталей, оказывает решающее влияние на развитие МКК. (При содержании углерода > 0,02%, соответствующего промышленным сталям типа 18% Сг- --Ь8% Ы1, их структура В равновесном состоя нии состоит из аустенита а-фазы и карбидов (СгРе)2зСб (рис. 28). Растворимость углерода в аустените. при комнатной тем-  [c.98]


Смотреть страницы где упоминается термин Межкристаллитная коррозия влияние структуры сплавов : [c.356]    [c.182]    [c.101]    [c.529]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.100 ]



ПОИСК



Коррозия влияние

Коррозия и сплавы

Коррозия межкристаллитная

Межкристаллитная коррози



© 2025 Mash-xxl.info Реклама на сайте