Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газ, испускание излучения воздуха

Воздух. Интерес к свойствам высокотемпературного воздуха усилился в последние годы в связи с проблемами теплопередачи при исследовании излучения от ядерных взрывов, при входе в атмосферу ракет и спутников и т. д. Поэтому было выполнено значительное количество работ с целью определения поглощения и испускания излучения воздухом [75—77]. В табл. 2.3 пред-  [c.121]

Поглощение и испускание излучения газами, такими, как СО, СОг, пары воды, NH3, играют важную роль в теплопередаче от пламени в камерах сгорания и в топках. Излучение высокотемпературного воздуха имеет большое значение при ядерных взрывах и высокоскоростных полетах, для космических аппаратов, возвращающихся в атмосферу Земли, и ракет. Передача инфракрасного излучения через земную атмосферу представляет интерес для астрофизики и метеорологии. Поэтому было выполнено большое количество теоретических и экспериментальных работ для определения поглощения, испускания и пропускания излучения газами. Теоретические работы в этой области уже упоминались выше. Подробный обзор спектральных коэффициентов поглощения для газов, определенных теоретически или экспериментально, можно найти в работах [60—62]. Ниже будут представлены некоторые данные по поглощению, испусканию и рассеянию излучения веществом, обсуждены результаты и упомянуты соответствующие работы.  [c.119]


В 16 гл. VII было показано, что если амплитуда ударной волны меньше критической (а в воздухе нормальной плотности критической амплитуде соответствует температура за фронтом Ту 285 000° К), то перенос излучения из высоконагретой области за фронтом в слои, расположенные перед ударным разрывом, не имеет диффузионного характера. Воздух в них нагревается до температур гораздо меньших температуры за фронтом, и испускание излучения в зоне прогревания не вносит практически никакого вклада в проходящий поток излучения, рожденного за разрывом. Воздух нагревается просто в силу поглощения проходящих квантов на расстояниях порядка длин пробегов для поглощения и толщина зоны прогревания is.x по порядку величины равна длине пробега I тех квантов, которые несут основную энергию спектра. Математически это выражается формулой (7.55), определяющей экспоненциальное спадание прогревания по усредненной оптической толщине т, соответствующей некоторому среднему по спектру коэффициенту поглощения % = 1//  [c.470]

Известны процессы излучения, сопровождающие химические превращения внутри тела, — так называемая хемилюминесценция. Сюда относится, например, свечение гниющего дерева или свечение фосфора, медленно окисляющегося на воздухе. В этом случае испускание лучистой энергии идет параллельно с изменением химического состава вещества и уменьшением запаса его внутренней энергии.  [c.682]

Выражение (13.21) практически остается справедливым для воздуха и некоторых других газов, у которых показатель преломления близок к единице. При выводе (13.21) Планк впервые сделал допущение о дискретном испускании энергии излучения квантами света, или фотонами, и, таким образом, заложил основы квантовой механики. На рис. 13.5 зависимость (13.21) представлена графически. Из рис. 13.5 видно, что максимум кривых ro . = f k) по мере увеличения температуры Т абсолютно черной поверхности смещается в сторону коротких воли. При температуре порядка 5800 К максимум спектральной плотности потока излучения Го-,. приходится на видимую часть спектра. Из сказанного следует, например, что  [c.280]

Вырал<ение (33.28) практически остается справедливым для воздуха и некоторых других га зов, у которых показатель преломления близок к единице. При объяснении (33.28) Планк впервые сделал допущение о дискретном испускании лучистой энергии квантами света, или фотонами, и, таким образом, заложил основы квантовой механики. На рис. 33.8 зависимость (33.28) представлена графически. Из рисунка видно, что максимум кривых ол = /( ) по мере увеличения температуры Т абсолютно черной поверхности смещается в сторону коротких волн. При температуре порядка 5800 К максимум спектральной плотности потока излучения Едх приходится на видимую часть спектра. Из сказанного следует, например, что вольфрамовая нить лампы накаливания (Т 3000 К) расходует большую часть энергии излучения на инфракрасную (невидимую) область спектра, т. е. большая часть энергии тратится не по назначению (идет на нагревание  [c.408]


Энергия атома определяется только его электронным состоянием. Энергия молекулы, помимо электронного состояния, зависит еще и от интенсивности колебательного и вращательного движений. Поэтому число энергетических уровней и число возможных переходов между ними у молекул гораздо больше, чем у атомов молекулярные спектры значительно сложнее, чем атомные. Иногда отдельные линии в спектре расположены настолько близко друг к другу и число их столь велико, что в некоторых участках они образуют почти непрерывный спектр. При высоких температурах или плотностях газа линии из-за сильного уширения могут даже перекрываться. Поэтому полосатые молекулярные спектры излучения и поглощения в некоторых условиях оказывают существенное энергетическое влияние, аналогично непрерывным спектрам. Большое значение имеют молекулярные спектры для поглощения и испускания света в воздухе при температурах порядка нескольких тысяч и десятка тысяч градусов.  [c.260]

Пример 1. Время затухания для картонной трубки. Попытаемся применить уравнение (28) к системе со многими степенями свободы. Возьмем картонную трубку, внезапно возбудим ее ударом и предоставим колебаниям свободно затухать. Удар возбудит главным образом самую низкую моду, для которой длина трубки равна половине длины волны. Система начнет колебаться. С концов трубки происходит испускание звуковой энергии, кроме того, некоторое ее количество теряется из-за трения воздуха о стенки трубки (т. е. звуковая энергия переходит в тепло). Таким образом, мы имеем затухающие колебания. Спрашивается, какова постоянная времени затухания этих колебаний Ваше ухо легко различит преобладающую частоту. Ту же частоту вы услышите, если постоянно дуть в конец трубки. Однако время затухания в этой системе слишком мало, чтобы его можно было измерить на слух. Есть две возможности. Возьмите микрофон, усилитель звуковой частоты и осциллограф. Включите развертку осциллографа в момент возбуждения колебаний и выход усилителя подайте на вертикальные пластины. (В хорошем осциллографе развертка может включаться внешним сигналом.) Сфотографировав след на экране осциллографа, вы можете прямо измерить т. Однако это можно сделать и иначе. Подайте выходное напряжение звукового генератора на небольшой громкоговоритель, установленный около одного конца трубки. В трубке возникнут установившиеся вынужденные колебания, частота которых будет задана звуковым генератором. Установите микрофон у другого конца трубки и измерьте с его помощью звуковое излучение с этого конца. Выход микрофона подайте на осциллограф, на экране которого можно будет измерить амплитуду звуковых колебаний. Теперь измените частоту генератора и т. д. Экспе-  [c.110]

Природа взаимодействия (44.12) была рассмотрена Сингви [145, 146] ). Электроны вблизи поверхности Ферми движутся со скоростями, значительно большими скорости звука S. Испускание фононов моншо рассматривать как излучение Черенкова или как волну от снаряда, движущегося и воздухе со скоростью, большей скорости звука. Возмущением захватывается только область следа внутри угла, равного рад. Проводя в (44.12) суммирование и беря только главное значение расходящихся выражений, Сингви установил, что энергия взаимодействия двух электронов равна нулю, за исключением случая, когда один из электронов находится в следе другого. Взаимодействие положительно (отталкивание) и максимально на границе следа, где оно становится бесконечным. Бом и Ставер [131] еще раньше высказывали предположение о том, что такая следовая природа взаимодействия мон ет оказаться существенной. Они предположили, что в сверхпроводящем состоянии могут образовываться цепочки электронов, в которых один электрон движется в следе другого. Сингви также рассматривал эту возможность. Однако в такой модели возникают трудности, связанные с принципом неопределенности. Как мы уже видели ранее, имеется веское доказательство того, что волновые функции электронов в сверхпроводящем состоянии размазаны на большие расстояния и поэтому трудно представить, чтобы они описывали локализованные и сравнительно слабо взаимодействующие цепочки .  [c.775]


Световые кванты, рождающиеся в высоконагретой области, почти беспрепятственно выходят из нее и поглощаются в окружающих слоях холодного воздуха. Таким образом, воздух в центральной сфере охлаждается за счет испускания света, а периферийные слои нагреваются за счет поглощения света. Нагретая область расширяется, а температура в ней падает. Процесс весьма сходен с процессом распространения тепловой волны с той, однако, разницей, что излучение, которое переносит энергию, теперь существенно неравновесно. Описанный процесс переноса тепла неравновесным излучением рассматривался А. С. Компанейцем и Е. Я. Ланцбургом [10, И].  [c.530]

Для пробоя газов на оптич. частотах требуются огромные электрич. поля порядка 10 —10 В/см, что соответствует интенсивности светового потока в луче лазера 10 —10 Вт/см (для сравнения, СВЧ-пробой атм. воздуха происходит при напряжённости поля 10 В/см). Возможны два механизма С. п. газа под действием интенсивного светового излучения. Первый из них не отличается по своей природе от пробоя газов в полях не очень больших частот (сюда относится и СВЧ-диапазон). Первые затравочные эл-ны, появившиеся по тем или иным причинам в поле, сначала набирают энергию, поглощая фотоны при столкновениях с атомами газа,— этот процесс явл. обратным по отношению к тормозному испусканию квантов при рассеянии эл-нов нейтр. возбуждёнными атомами. Накопив энергию, достаточную для ионизации, эл-н ионизует атом, и вместо одного появляются два медленных Эл-на, процесс повторяется. Так развивается лавина (см. также Лавинный разряд). В сильных полях такой процесс осуществляется достаточно быстро и в газе вспыхивает пробой. Второй механизм возникновения С. п., характерный именно для оптич. частот, имеет чисто квантовую природу. Эл-ны могут отрываться от атомов в результате многоквантового фотоэффекта, т. е. при одновременном поглощении сразу неск. фотонов. Одноквантовый фотоэффект в случае частот видимого диапазона невозможен, т. к. потенциалы ионизации атомов в несколько раз превышают энергию кванта. Так, напр., энергия фотона рубинового лазера равна 1,78 эВ, а  [c.668]


Смотреть страницы где упоминается термин Газ, испускание излучения воздуха : [c.418]    [c.368]    [c.56]   
Сложный теплообмен (1976) -- [ c.121 ]



ПОИСК



Газ, испускание излучения

Испускание 363—369



© 2025 Mash-xxl.info Реклама на сайте