Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело рабочее, виды выбор

Тело рабочее, виды 102—104 -----выбор 102—103, 309—313  [c.462]

Механизм ЭИ может быть представлен двумя процессами, действующими во времени друг за другом образование в результате электрического пробоя в поверхностном слое твердого тела канала разряда и последующее разрушение твердого тела под действием механических напряжений, возникающих в результате расширения канала разряда при выделении в нем энергии емкостного накопителя. Первая стадия процесса определяет уровень напряжения, при котором реализуется процесс ( рабочее напряжение ). Выбором оптимальных параметров импульсного напряжения и условий пробоя (вид среды, геометрия электродной конструкции) достигаются минимальные градиенты напряжения пробоя. На второй стадии процесса за счет оптимизации преобразования энергии накопителя в работу разрушения достигается минимальная энергоемкость разрушения материала. Техникоэкономическая эффективность процесса в значительной степени зависит от возможности интенсификации процесса разрушения - достижения высоких объемных показателей разрушения в единицу времени при приемлемых удельных показателях энергоемкости. Последнее может осуществляться как за счет увеличения числа единичных актов разрушения в единицу времени путем повышения частоты подачи  [c.25]


Выбирая главный вид, учитывают рабочее положение детали в механизме и вычерчивают деталь по возможности в таком же положении. Вместе с тем для некоторых деталей, имеющих форму тел вращения, при выборе главного вида учитывают положение, которое они занимают в процессе обработки на станке.  [c.174]

Кроме того, повышение к. п. д. любой тепловой установки достигается целесообразным выбором основных параметров рабочего тела — давления и температуры, правильным выбором размеров и оби их видов отдельных элементов установки.  [c.10]

При выборе способов обеспечения, заданных условиями эксплуатации, точности изготовления деталей и качества их рабочих поверхностей, следует иметь в виду, что качество обработанной поверхности и точность деталей машин в основном характеризуются геометрическими параметрами (макрогеометрией, волнистостью, шероховатостью, направлением штрихов обработки, точностью взаимного расположения элементарных поверхностей и др.) физико-механическими свойствами поверхностного слоя деталей (наклепом, остаточными напряжениями) и физико-химическими свойствами поверхностного слоя, которые определяются взаимодействием ненасыщенных силовых полей поверхностных атомов твердого тела с силовыми полями молекул внешней среды, находящихся в контакте с поверхностью твердого тела.  [c.369]

В зависимости от вида и особенностей технологической схемы математическая модель комбинированной энергетической установки с МГД-генератором включает 35—40 элементов оборудования и соответствующее число связей между ними. При этом описывается взаимосвязь 210—220 параметров. Исходная информация достигает 160—170 величин и более В качестве основных независимых параметров схемы комбинированной установки (кроме указанных ранее параметров для отдельных элементов и рабочих тел) приняты следующие температура подогрева окислителя Ток (или концентрация кислорода в нем oJ, статическая температура рабочего тела перед каналом МГД-генератора Г , скалярная электропроводность в конце канала ooj, давление за диффузором рад, расход первичного пара на турбину Сщ, температура уходящих газов из парогенератора Гу.г- Выбор этих параметров во многом определяет порядок расчета технологической схемы установки.  [c.123]

Ввиду дуализма свойств рабочего тела и внешних воздействий характер или направленность процесса может выражаться как в тотальных, так и в локальных величинах. При выборе того или иного пути при построении зависимости необходимо иметь в виду требование универсальности. Показатель направленности процесса-должен быть общей характеристикой миграционных процессов как при переменном, так и при постоянном объеме рабочего тела.  [c.56]


Итак, мы определили начало отсчета абсолютной температуры. Обратим внимание читателя на то, что нам пришлось для этого помимо измерений давления и объема (построение системы изотерм в термостате и системы адиабат в адиабате) произвести измерение одной калорической величины — теплоемкости Су (или Ср) и убедиться в ее независимости от температуры. Ситуация не изменилась бы, если бы в качестве рабочего тела для калибровки температурной и энтропийной шкал мы выбрали бы не совершенный газ, а иную термодинамическую систему. И в этом случае для определения начала отсчета температуры нам пришлось бы помимо измерения давлений и объемов базироваться на одном калориметрическом измерении. Глубокая причина этого заключается в том, что термодинамическое определение температурной шкалы в конечном счете базируется на формуле (7.2). Нетрудно видеть, что эта формула неинвариантна по отношению к сдвигу начала отсчета температуры и предполагает определенный выбор величины в, а именно 0 = 0.  [c.32]

Для того чтобы использовать уравнение (14) в целях построения температурной шкалы, необходимо установить вид функции / (0). Как указано выше, коэффициент полезного действия тепловой машины Карно не зависит от выбора рабочего тела, и, следовательно, функция Р д) является универсальной, т. е. одинаковой для всех веществ. Однако о виде этой функции термодинамика не может дать никаких сведений. Поэтому, так же как и в общем случае установления температурной шкалы по любому термометрическому параметру (стр. 23), вид функции / (0) можно выбрать лишь произвольно.  [c.29]

Как указывалось выше, для правильного выбора термодинамического образца следует иметь в виду, что цикл Карно только тогда удовлетворяет условию обратимости, когда температуры источника и приемника тепла постоянны. Поэтому при конечной суммарной теплоемкости источника и приемника тепла изотермические процессы в образцовом цикле Карно следует заменить такими обратимыми процессами, при которых рабочее тело имеет ту. же температуру, что и приемники и источники тепла. Естественно, что если речь идет о приближенной обратимости, то температура рабочего тела может отличаться от внешних температур на достаточно малое значение.  [c.89]

При выборе места для сооружения теплоэлектроцентрали (ТЭЦ), вырабатывающей два вида продукции, из указанных трех факторов решающим оказывается близость ее площадки к тепловым потребителям, так как греющее рабочее тело —-пар экономически выгодно передавать на расстояние до 5 км, а горячую воду, в зависимости от метода подачи тепла потребителям (одно- или двухтрубная система), до 40 км. Тепловые потребители по преимуществу располагаются в городах и других населенных пунктах, поэтому теплоэлектроцентрали строятся в них или вблизи них. При отсутствии недалеко от сооружаемой ТЭЦ значительного источника водоснабжения (река, озеро) в технологическом процессе теплоэлектроцентрали используют искусственные способы охлаждения циркуляционной воды конденсаторов (ом. 7-4). При этом надо иметь в виду, что на ТЭЦ для технологического процесса требуется меньше воды и электрические мощности их меньше, чем у КЭС. Подвоз топлива и удаление золы и шлаков ТЭЦ решаются рациональным методом расположения площадки к транспортным магистралям.  [c.153]

ПОЛЯ. Такое решение меняет схему ракетного двигателя по существу, а также меняет н подход к выбору рабочего тела. Теперь от него требуется не максимальная теплоемкость, а наибольшая склонность к ионизации, и выбор следует остановить на одном из щелочных металлов. Это, — например, цезий, литий или рубидий. У них низкая температура плавления, их можно хранить на борту в жидком виде, а при температуре порядка 1500 °С они, находясь уже в газообразном состоянии, полностью ионизируются. Температура рабочего тела, таким образом, существенно снижается. Нагрев связывается не с требованиями высокой энтальпии, а необходим лишь для придания рабочему телу требуемых свойств взаимодействия с электростатическим и электромагнитным полями.  [c.199]

При выборе типа рабочего сиденья учитываются специфика работы, объем рабочего пространства, пространственные соотношения с другими элементами рабочего места, вид рабочего места, возможность смены рабочих поз, рабочего положения, величина развиваемых усилий, диапазон движений частей тела, наличие вибрации, условия безопасности (рис. 46, 47).  [c.81]


Рабочие тела для ядерных ракетных двигателей должны выбираться среди тех элементов или сложных веществ, которые в газообразном состоянии имеют низкий молекулярный вес при высокой температуре. Очевидно, что выбор нужно делать среди таких элементов, как водород, гелий, литий, бериллий и их диссоциирующих соединений — различных углеводородов и гидридов. Представляют также интерес легко диссоциирующие соединения азота и водорода, а также некоторые из спиртов. Рассмотрение точки плавления этих материалов сразу практически исключает из их числа литий и бериллий. Кроме того, чистый литий является сильным поглотителем нейтронов, а бериллий сравнительно дорог (от 10 до 50 долларов за фунт) таким образом, ни один из этих двух материалов не представляет интереса, даже если они могут существовать в виде жидких соединений. Очень трудные криогенные проблемы, связанные с получением и хранением жидкого гелия, делают нежелательным его использование в качестве топлива. Список потенциально полезных материалов уменьшается до одного элемента — водорода и его соединений. В широких пределах применимы четыре жидких топлива, а именно водород, аммиак, этиловый спирт, пропан. Некоторые физические свойства этих веществ в жидком состоянии даны в табл. 15.1.  [c.511]

Имеющийся в нашей стране и за рубежом опыт по реализации эффекта многослойности при создании крупногабаритных оболочечных конструкций типа сосудов давления и трубопроводов (изготовляемых путем спиральной навивки или последовательного наслоения на цилиндрическую обечайку тонколистового проката) свидетельствует о значительных преимуществах данного вида конструкционного материала по сравнению с толстолистовым монометаллом (того же сечения) и об определенных нерешенных задачах в области прочности составных слоистых тел и изделий. Однако при этом все более очевидной становится идея о том, что на современном этапе развития машиностроения необходимым является переход от принципов выбора материалов при создании машин и инженерных сооружений к конструированию материалов, т. е. в настоящее время конструктор, создавая машину (или иной вид оборудования), не всегда может удовлетвориться свойствами имеющихся в его распоряжении традиционных материалов, производимых, например, металлургической отраслью. Взаимодействие элементов конструкций с рабочей средой при наличии во многих случаях неоднородных и нестационарных силовых, тепловых, электромагнитных, радиационных и других полей сопровождается протеканием процессов коррозии, эрозии, трещинообразования и т. д., наиболее активно развивающихся в поверхностных слоях материала.  [c.12]

По определенным суммарным расходам пара и горячен воды и вида топлива производится выбор типа, производительности и количества котлов. В котельных с общей тепловой мощностью (пар и горячая вода) примерно до 2 0 гДж/ч рекомендуется устанавливать только паровые котлы, а горячую воду для нужд отопления, вентиляции и горячего водоснабжения получать от пароводяных подогревателей. Для мощных котельных тепловой мощностью более 420 гДж/ч может оказаться рациональным применение комбинированных паровых котлов с гибкой регулировкой паровой и водогрейной нагрузкой. После выбора котлов производится выбор всего необходимого для их вспомогательного оборудования, т. е. теплообхменных аппаратов, аппаратуры водоиодготовки, насосов, баков и пр. Все выбранное оборудование наносится на тепловую схему. Условными линиями изображают трубопроводы для различного вида жидкостей, пара и газа. Сложные тепловые схемы котельных с паровыми, водогрейными и пароводогрейными котлами определяют необходимость расчета тепловых схем методом последовательных приближений. Для каждого элемента тепловой схемы составляют уравнение материального и теплового балансов, рещение которых позволяет определить неизвестные расходы и энтальпии сред. Общая увязка этих уравнений осуществляется составлением материального и теплового балансов деаэратора, в котором сходятся основные потоки рабочего тела. Ряд значений величин, необходимых для увязки тепловой схемы, получают из расчета ее элементов и устройств. Рядом значений величин можно предварительно задаваться. Например, на деаэрацию питательной воды и подогрев сырой и химической воды при закрытой системе водоснабжения от 7 до 10 % суммарного отпуска тепловой энергии внещним потребителям на потери теплоты внутри котельной 2—3 % той же величины.  [c.302]

Выбор вида турбины определяется схемой двигателя и параметрами рабочего тела турбины. Условия работы турбинь существенно зависят от того, подается ли газ после турбины в камеру сгорания или нет. В первом случае турбину назьшают предкамерной (схема ЖРД с дожиганием генераторного газа), во втором - автономной (схема ЖРД без дожигания генераторного газа). В схеме с предкамерной турбиной давление на выходе из турбины (противодавление) велико, оно определяется давлением в камере сгорания двигателя. В схеме с автономной турбиной противодавление значительно меньше, так как газ после турбины выбрасывается через рулевые сопла или насадки, минуя камеру сгорания.  [c.123]

Такой способ использования ядерной реакции открывает очень большие возможности в выборе носителя энергии в двигателе, В качестве рабочего тела, воспринимающего энергию ядерных реакций и реализующего ее в виде тепловой, может быть выбраио вещество с наибольшей весовой теплоемкостью, т, е. с низким числом атомов в молекуле и возможно меньшим молекулярным весом.  [c.170]



Смотреть страницы где упоминается термин Тело рабочее, виды выбор : [c.109]    [c.81]   
Двигатели Стирлинга (1986) -- [ c.102 , c.103 , c.309 , c.313 ]



ПОИСК



Выбор рабочего тела

Рабочее тело



© 2025 Mash-xxl.info Реклама на сайте