Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость горения ТРТ давления

При изменении начальной температуры заряда в диапазоне (-40. .. +50) °С за счет зависимости скорости горения ТРТ от температуры давление в камере сгорания может меняться в 1,5. .. 2,5 раза, в зависимости от применяемого топлива. Из приведенных оценок видно, что систематический и случайный разброс параметров процесса работы РЭУ вызывает значительную нестабильность  [c.278]


Рис. 7. Зависимость скорости горения от удельного импульса для двухосновных ТРТ при давлении в камере 7 МПа и температуре 20 °С [154]. Рис. 7. Зависимость <a href="/info/117711">скорости горения</a> от <a href="/info/40028">удельного импульса</a> для двухосновных ТРТ при давлении в камере 7 МПа и температуре 20 °С [154].
Заряд ТРТ разбивают на ряд таких конечных элементов. От элемента к элементу могут изменяться проходная площадь канала заряда, площадь поверхности горения и скорость горения. Обычно поступают так с помощью соотношения (5.1) аппроксимируют давление в сечении переднего торца заряда и тем самым устанавливают условия газовыделения в этом сечении. Для расчета скорости газовыделения и течения продуктов сгорания во втором конечном элементе используют значения мае-  [c.103]

В работе [11] дан исчерпывающий обзор термических характеристик ЦТЭТН и ЦТМТН, включающий физические сворютва, особенности разложения, воспламенения и самовозгорания этих соединений. Обсуждаются возможные механизмы реакций на основе результатов испытаний в ударных трубах, экспериментальных исследований воспламенения зарядов ТРТ и зависимости скоростей горения от давления и начальной температуры в широком диапазоне значений этих параметров.  [c.35]

Линейная скорость горения ТРТ г в заданных диапазонах рабочего давления и температуры обычно определяется в экспериментах на модельных РДТТ, применяемых для оценки балли-  [c.105]

Значения скоростей горения, получаемые на модельных РДТТ, часто приходится увеличивать на 1—3%, чтобы обеспечить соответствие со скоростями горения в полномасштабных двигателях. Для двигателей с диаметром камеры сгорания, на порядок большим, чем у модельного РДТТ, приходится корректировать скорость горения в сторону увеличения на 5—7%. Наибольшие корректировки требуются для двигателей с корпусом из стекловолокна, в которых вследствие совместного расширения ТРТ и корпуса при повышении давления изменяется толщина свода горения заряда. На рис. 55 показаны различные формы зависимости скорости горения ТРТ от давления в камере. Прямая линия соответствует обычному степенному закону г = арк .  [c.107]


Если в законе скорости горения ТРТ обнаруживается область с заметно пониженным или нулевым показателем степени, такое топливо называют топливом с пологой кривой горения (таковыми являются, например, двухосновные ТРТ с малыми добавками соединений свинца). Топлива, характеризующиеся малыми отрицательными значениями п в узком интервале давлений, т. е. наличием провала на кривой г(рк), называют мезатопливами. Кривую горения часто аппроксимируют кусочно-линейной функцией, состоящей из прямолинейных участков с разными значениями а и п в нескольких интервалах давления. На практике для определения параметров а и п в каком-либо одном интервале давления используют результаты семи опытных испытаний ТРТ (трех при номинальном давлении, двух при повышенном и двух при пониженном давлении) при  [c.107]

Результаты работы [135] свидетельствуют о том, что определяющей реакцией в пламени является реакция NO2 с альдегидом. Исследования этой реакции на плоскопламенной горелке дали значения температуры и скорости распространения пламени, близкие к наблюдаемым при горении ТРТ. Аналогичные результаты получены в ONERA (Франция), причем при подгонке измеренного температурного профиля под соотношение (5.13) подтвердилось, что rop,i = 5-r-7 ккал-моль . Такой же вывод следует из экспериментов [98]. Результаты измерений температуры в конце зоны первичного пламени [2, 70] показаны на рис. 32. При фиксированном давлении температура Trop.i повышается с увеличением теплоты сгорания топлива с повышением давления температура существенно возрастает.  [c.65]

К сожалению, нет никаких экспериментальных сведений по-изменению геометрии заряда, подтверждающих предложенную схему поверхностных реакций, а имеющиеся данные говорят скорее в пользу многопламенной структуры, чем структуры с одиночным пламенем, постулированной в работе [72]. Поэтому была предложена статистическая модель [7], базирующаяся на нескольких типах пламен ) (рис. 33, в). В этой модели приняты следующие предположения I) прогрев связующего и окислителя осуществляется за счет теплопроводности, 2) связующее и окислитель разлагаются эндотермически, 3) между продуктами разложения в конденсированной фазе протекают экзотермические реакции и 4) газообразные продукты улетучиваются и реагируют в газовой фазе. При низком давлении рассматриваются три вида пламени первичное пламя между продуктами разложения связующего и окислителя, пламя окислителя и конечное диффузионное пламя между продуктами двух других пламен. Эта модель предсказывает зависимость скорости горения от содержания окислителя в ТРТ и от начальной температуры топливного заряда, среднюю температуру поверхности и расстояние до фронта пламени. Модель несколько завышает влияние размера частиц по сравнению с наблюдаемым на опыте. Бекстед усовершенствовал модель, применив ее к двухосновному ТРТ [4], а в следующей работе [5] предположил, что горючее и окислитель имеют разную, а не одинаковую (среднюю) температуру поверхности. Он также перешел от осреднения по  [c.70]

В данной главе излагаются методы расчетно-теоретического исследования следующих проблем горения и течения продуктов сгорания в РДТТ, баллистических свойств ТРТ и влияния условий в камере сгорания и в окружающей среде на характеристики топлива и сопла. Влияние температуры, давления, мас-соподвода, эрозионного горения и перегрузок на характеристики РДТТ изучается для режима установившегося горения и переходных режимов. Проведены расчеты удельного импульса, характеристик сопла и скорости горения, а полученные результаты сопоставлены с экспериментальными данными с учетом масштабных факторов. В последнем разделе рассмотрены вопросы неустойчивости горения, в основном по материалам недавнего обзора [136].  [c.102]

Когда газ вблизи зоны горения колеблется, происходят колебания скорости горения, которые вызывают пульсации скорости газификац1ш ТРТ ш относительно средней величины массового потока т. бычно эту величину представляют в безразмерном виде rh lih, т. е. в виде отношения возмущения потока массы от поверхности горения к средней массовой скорости горения. Чтобы определить отклик процесса горения, необходимо знать его зависимость от частоты, амплитуды и типа колебаний в потоке, среднего давления в камере и состава топлива. Такую информацию можно получить, сделав следующие допущения  [c.118]


Свойства ТРТ, требуемого для бессопловой конфигурации, значительно отличаются от свойств топлива, применяемого в двигателях с сопловым блоком. Чтобы предотвратить появление длительного и неэффективного периода догорания в конце работы двигателя и уменьшить эффекты эрозионного горения, в бессопловом РДТТ нужно обеспечить более высокую скорость горения топлива. Механические свойства таких ТРТ при низких и высоких температурах должны быть лучше при низких температурах их повышенная способность деформироваться без разрушения позволяет выбрать оптимальные величины свода горения заряда, плотности заряжания двигателя и полной тяги, а при высоких температурах это обеспечит сохранение целостности заряда ТРТ в условиях высоких сдвиговых нагрузок, вызванных большими продольными перепадами давления в камере.  [c.129]

ВИСИТ от возможности модификации ТРТ. Например, существующий прототип топлива со скоростью горения, превышающей в 2,5 раза скорость горения базового ТРТ, позволяет увеличить удельный импульс почти на 5,5% по сравнению с значением для базового двигателя с соплом. Далее, принимая во внимание тот факт, что предел прочности модифицированного топлива на 25% выше, чем у базового, диаметр внутреннего канала можно уменьшить, доведя отношение внешнего диаметра заряда к внутреннему до 3,5. Это позволило бы разместить в камере 1,36 кг дополнительного топлива и тем самым увеличить полный импульс РДТТ на 12,4%. Замена ТРТ и увеличение свода горения вместе позволяют снизить максимальное рабочее давление до уровня, соответствующего давлению в базовом двигателе, а единственным недостатком было бы увеличение полного веса РДТТ приблизительно на 2%. В табл. 11 подытожены результаты расчетов таких вариантов и, кроме того, приведены данные, иллюстрирующие влияние длины РДТТ на удельный импульс. При уменьшении показателя степени в законе скорости горения топлива с 0,5 до 0,4 приращение скорости ракеты с бессопловым двигателем было бы на 13% больше, чем для соответствующего двигателя с соплом.  [c.138]

Как следует из табл. 11, двигатели большей длины с большими L/D позволяют обеспечить более высокие рабочие давления и удельный импульс. Увеличение длины бессоплового РДТТ на 25 см по сравнению с базовым вариантом обеспечивает на 8% большее приращение скорости полета. Это свидетельствует о том, что отношение длины двигателя к диаметру в базовом варианте, равное 6,5, намного меньше оптимального для бессоплового РДТТ. Последующая модификация ТРТ с целью изменения скорости горения и утолщение свода горения позволили бы увеличить приращение скорости до 13% по срав-  [c.139]

Для регулирования величины тяги в РДТТ, установленных, например, на ракетах, предпочтительнее применять твердотопливный газогенератор. Расход продуктов сгорания в газогенераторе можно изменять, используя тот факт, что скорость горения большинства ТРТ зависит от давления. Эта особенность позволяет предложить простую схему регулирования тяги с переменным расходом (рис. 125, а). Давление в генераторе регулируется изменением площади проходного сечения в клапане при ее уменьшении давление возрастает, что вызывает рост скорости горения и, следовательно, расхода.  [c.213]

В которой предполагают, что продукты сгорания подчиняются уравнению состояния идеального газа, а также пренебрегают трением и плотностью газа по сравнению с плотностью ТРТ. При торцевом горении заряда, когда можно предположить, что давление в камере РДТТ постоянно, и при горении в радиальном направлении канального заряда с низким коэффициентом объемного заполнения корпуса топливом, когда можно пренебречь скоростью течения продуктов сгорания, имеем  [c.103]


Смотреть страницы где упоминается термин Скорость горения ТРТ давления : [c.120]    [c.59]    [c.89]    [c.106]    [c.108]    [c.216]    [c.88]    [c.91]   
Ракетные двигатели на химическом топливе (1990) -- [ c.107 ]



ПОИСК



Горение

Скорость горения ТРТ

Скорость давление



© 2025 Mash-xxl.info Реклама на сайте