Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Брызгальные бассейны характеристика

Вопросы, связанные с эффективностью брызгальных бассейнов, настолько сложны, что до сих пор нет единого мнения ни по тес/ретическому общему решению, ни по методическому плану постановки эксперимента, поэтому каждая из изложенных точек зрения посвящена конкретной системе в конкретных обстоятельствах (при индивидуальных значениях температурных и расходных характеристик, геометрических, конструктивных параметров, требованиях эксплуатации).  [c.18]


Практика использования сравнительно небольших брызгальных бассейнов на действующих ТЭС показала, что эффективность работы охладителей этого типа может быть достаточно высокой. Однако малочисленность брызгальных бассейнов, а следовательно, и ограниченность натурных наблюдений на них, различие тепловых нагрузок и разная производительность, использование в каждой системе своих схем компоновок и конструкций разбрызгивающих устройств не позволяют однозначно решить весь комплекс задач, стоящих на пути широкого практического использования этого охладителя. Прежде всего необходимо определить эффективность брызгальных бассейнов в сравнении с известными типами промышленных охладителей (их место по уровню охлаждения и производительности), каким образом можно повысить их охлаждающую способность и, наконец, как прогнозировать гидроаэродинамические характеристики новых брызгальных бассейнов с учетом их возросшей производительности, конфигурации, климатической зоны, в которой они размещаются, рельефа местности и влияния на окружающую среду.  [c.21]

Другим источником ошибок при определении эффективности брызгального охладителя является перенос результатов измерений тепловых характеристик, полученных на фрагментарных установках, на крупномасштабные опытно-промышленные установки или натурные брызгальные бассейны. На рис. 1.6 схематично изображены брызгальные бассейны различной конфигурации. Безразмерные комплексы NTU, SER, К (см. рис. 1.5) для этих брызгальных бассейнов должны быть равными, так как воздушный поток проходит равное расстояние от входа в бассейны до выхода из них. Если изменить направление ветра (при всех прочих равных условиях), то для бассейна 1 значения комплексов примерно будут равны первоначальным. Однако для бассейнов 2 и особенно 3 и 4 первоначально определенный безразмерный комплекс будет частным случаем, наблюдаемым с малой вероятностью. Для брызгальных бассейнов, имеющих форму дуги 5, как, например, бассейн Запорожской АЭС, перенос значений безразмерных комплексов, полу-  [c.24]

Высокопроизводительный брызгальный бассейн для тепловых, а особенно для атомных станций может эффективно работать лишь тогда, когда его проект научно обоснован, что требует выполнения комплексных исследований, в состав которых входят натурные наблюдения на действующих брызгальных бассейнах и наблюдения за состоянием пограничного слоя атмосферы. Для получения надежных данных, обосновывающих новые конструктивные решения охладителя, прежде всего необходимы методика экспериментальных исследований и расчетный метод, с помощью которых можно было бы оценить уровень охлаждения различных по производительности, конфигурации, схемам компоновок разбрызгивающих устройств брызгальных бассейнов, прогнозировать их охлаждающую способность и проектировать бассейн с заданными характеристиками.  [c.29]


Прежде чем перейти к решению задачи об оценке рабочих характеристик в области б брызгального бассейна, необходимо рассмотреть упрош,енную физическую модель капельного потока брызгального бассейна, сделав необходимые допущения.  [c.35]

В связи с этим для научного и технического обоснования проекта брызгального бассейна большой производительности был спроектирован новый опытный брызгальный стенд для исследований группового расположения сопл [5]. В задачи исследований на стенде входило определение расходных характеристик известных разбрызгивающих устройств, выбор наиболее эффективного типа сопла, напора на соплах, схемы их компоновки, определение эффективности охлаждения горячей воды соплами в условиях взаимного влияния факелов разбрызгивания при различных направлениях и скоростях ветра, установление размеров брызгального бассейна при заданной плотности орошения, прогноз температур охлажденной воды. Решение всех этих задач реализуется на стенде благодаря его технологическим и конструктивным возможностям.  [c.42]

Известей также способ определения термических характеристик брызгальных бассейнов, заключающийся в исследовании трех брызгальных уста-  [c.61]

Третий, заключительный этап состоит в определении температур охлажденной воды в брызгальном бассейне или в установлении оптимального расстояния между брызгальными устройствами при создании бассейна с заранее заданными характеристиками. Эта задача решается установлением связи расстояния между брызгальными устройствами с тепловлажностными характеристиками факела, измеренными в створах, соответствующих этому расстоянию. Если брызгальные устройства установить на расстоянии, при котором температуры и влажности воздуха с наветренной и подветренной стороны (в конце тепловлажностного факела) равны, то температура охлажденной в брызгальном бассейне воды будет такой же, как темпера-  [c.62]

Отмеченные способы установления выноса капель из области распыла в брызгальном бассейне являются весьма приближенными. Уточнить их можно, используя методы математического моделирования, включающие в себя систему уравнений (2.1) — (2.14) с подробными характеристиками приземного слоя атмосферы, систему уравнений движения капель, описывающую условия формирования факела разбрызгивания с учетом экспериментальных данных по гранулометрическому составу капель. Такой расчет позволит не только судить о поведении капельного потока в области разбрызгивания, но даст возможность оценить влияние брызгального бассейна, в частности, его тепловлажностного факела на близлежащую территорию, на микроклимат.  [c.127]

На фиг. 61 дана гарантийная характеристика для брызгального бассейна с американскими винтовыми соплами (ом. фиг. 60).  [c.90]

Фиг. 61. Характеристика брызгального бассейна. Фиг. 61. Характеристика брызгального бассейна.
Вода, получаемая из градирен и брызгальных бассейнов, принимается со средней расчётной температурой 20—25°. На фиг. 3. приведена характеристика конденсатора, показывающая зависимость вакуума от нагрузки конденсатора при разной начальной температуре охлаждающей воды.  [c.309]

На практике, как правило, сочетается большое число специфических особенностей брызгальных систем, существенно влияющих на температуру охлажденной воды, как например, различная зависимость эффекта охлаждения от конструкции разбрызгивающего устройства, действующего напора воды, скорости ветра. Большое влияние на уровень охлаждения оказывает конфигурация бассейна, его ширина и протяженность, расположение воздушных коридоров, ориентация по отношению к преобладающим направлениям ветра. Сюда же можно отнести особенности режима работы электростанции, наличие в системе водоснабжения ТЭС или АЭС других типов охладителей, климатические характеристики района.  [c.25]


Охлаждающая способность брызгальных устройств или их систем характеризуется значением средней температуры /ср = = ( 1 + 2)/2. Параметры воздуха, как правило, не связаны с нагревом и увлажнением воздуха по мере его проникновения в область капельного потока (рис. 1.5). Исключение составляет комплекс SER, куда входит температура смоченного термометра выходящего из бассейна воздуха, но, как показывает опыт, определить эту температуру в натурных условиях с достаточной точностью маловероятно. Таким образом, во всех безразмерных комплексах теплоотдача с капельной водной поверхности не связана в полной мере с тепловыми характеристиками воздушного потока в области брызгального бассейна, что обусловливает труднооценимую погрешность значений отмеченных комплексов при оценке с их помощью работы различного рода охладителей.  [c.24]

Н. Н. Терентьева, которая была получена из анализа работы большого числа брызгальных бассейнов сравнительно малой производительности, оборудованных соплами конструкций Юни-Спрей и Спреко . Используя теоретическую зависимость коэффициентов тепло- и массоотдачи, данные лабораторных исследований по гранулометрическому составу капель и введя допущение его идентичности для различных конструкций разбрызгивающих устройств, Н. Н. Терентьев с помощью уравнения теплового баланса получил в виде номограммы зависимость температуры охлажденной воды от основных гидроаэро-термических характеристик водного и воздушного потоков. При этом не учитывались габариты факела разбрызгивания, производительность и компоновка единичных разбрызгивателей, параметры воздушного потока в области бассейна и на выходе из него, ориентация брызгального бассейна по отношению к направлению ветра.  [c.25]

Сравнение результатов расчета с данными натурных исследований подтвердило снижение температурного напора по направлению ветра. Отдельные экспериментальные характеристики брызгальпых модулей, главным образом первого и второго ряда со стороны входа воздуха, оказались несколько завышенными, что объясняется изменчивостью метеорологических факторов во времени, в частности, порывами ветра. По-видимому, здесь нельзя ожидать большой сходимости результатов, поскольку исходная модель расчета весьма далека от условий работы натурного брызгального бассейна.  [c.27]

При оценке эффективности работы брызгальных бассейнов широко использовались исследования в лабораторных и натурных условиях, где устанавливались закономерности изменений параметров воды и воздуха [16, 17, 23, 29]. Были разработаны методики расчета и соответствующие программы, пригодные для использования в инженерной практике. Общая расчетная схема относится главным образом к области стабилизированных аэротермических характеристик, т. е. относится к брызгальному бассейну большой протяженности и, в частности, к концевой его части, которая отличается малой активностью и малыми энергетическими потенциалами. В этих же работах рассматривается гидродинамика ламинарного потока при наличии легкопроницаемой шероховатости, рассчитаны профили скорости и трения в потоке, установлена плотность распределения частиц, их снос потоком и соответствующие профили. Показано, что трансформация поля скоростей определяется действием трех механизмов торможением частицами основного потока, диффузией кинематической энергии от свободного потока в результате трения между слоями жидкости, переносом кинетической энергии свободного потока частицами при их движении от быстрых слоев течения к замедленным.  [c.28]

Наиболее радикальным решением вопроса интенсификации охлаждения в брызгальных бассейнах является максимально возможное сокращение области стабилизированных характеристик, а в лучшем случае — ее исключение. Поэтому разрабатываются конструкции брызгальных бассейнов главным образом на основе высокопроизводительных разбрызгивающих устройств (модулей), плановая компоновка которых представляет собой кольцо, эллипс ( стадионная дорожка ), узкую U-образную петлю и т. п. При этих схемах области стабилизированных аэротермических параметров минимальны, а при значительном расстоянии между разбрызгивателями, в один — два раза превышающем радиус разбрызгивания, эта область отсутствует. Таким образом, на основании проведенных исследований подтверждается снижение эффективности охлаждения в брыз-  [c.28]

Представляют также существенный интерес характеристики воздушного потока в этой части брызгального бассейна его распределение по высоте, пульсация, турбулентность и т. п. Наружный поток воздуха входит в область а при минимальной плотности капельного потока, образуемого отдельными каплями, летящими по наиболее протяженным траекториям. Далее воздушный поток встречает все более плотный капельный поток, растет концентрация капель в активном объеме. Максимальное значение теплосъема определяется наличием в этой области пространства некоторой средней для бассейна в целом плотности орошения, развитого факела разбрызгивания и активного воздушного потока, когда его температура и влажность еще не стабилизировались.  [c.31]

В развитых капиталистических странах эти работы ведутся весьма интенсивно [40, 42—44]. Например, в 1974 г. во Франции на электростанции Поршвиль был построен экспериментальный брызгальный бассейн площадью 5000 с расходом воды 2,2 mV при напоре на соплах 0,13 МПа. Полученные на нем опытные данные сравнивались с результатами испытаний одиночного сопла, установленного в непосредственной близости от бассейна. Установка предназначалась не только для определения характеристик какой-то конкретной системы, но и для проведения исследований более общего характера, в частности, для определения возможности моделирования разбрызгивания с учетом различных конструктивных особенностей брызгальных устройств и для выбора оптимального решения.  [c.41]


Наряду с тепловыми испытаниями брызгальных устройств были проведены исследования влияния факела разбрызгивания на тепловлажностные характеристики воздуха, проходящего сквозь капельный поток. Важность этих исследований обусловлена не только получением необходимых эксперимеитальных данных для расчета влияния брызгального бассейна на окружающую среду, но и установлением возможности прогноза температур охлан<денной воды проектируемых брызгальных бассейнов. Экспериментальные исследования тепловлажностного факела, образуемого БВУ-4 производительностью 800 мУч при напоре воды 0,14 МПа помимо измерений гидротермических характеристик водного потока включали в себя измерения параметров воздуха в трех створах перед факелом разбрызгивания, с наветренной его стороны и на расстояниях 20 и 40 м  [c.58]

Измеренные таким образом характеристики тепловлажностного факела вместе с температурами охлажденной воды, снятыми по соответствующим номограммам, являются исходными параметрами при составлении прогноза температур охлажденной воды в брызгальном бассейне или при создании брызгаль-ного бассейна с заранее заданными тепловыми и геометрическими параметрами. Однако наблюдения за тепловлажностным факелом брызгальных устройств оказываются сложными, поскольку измерения параметров воздуха приходится производить в среде выносимой ветром влаги, мельчайшие капли которой при оседании на сухом термометре могут внести существенные погрешности. Для совершенствования методики фиксации температуры и влажности тепловлажностного факела брызгальных устройств, повышения информативности, точности измерений, сокращения сроков и трудоемкости испытаний попы-  [c.60]

Проведенные исследования брызгальных бассейнов большой производительности включали в себя разработку нового способа оценки их охлаждающей способности. Способ основывается на экспериментальном изучении каждого брызгального устройства на опытном стенде. На первом этапе исследований определяется связь между температурой и влажностью воздушного потока в широком диапазоне их значений. На втором этапе на том же опытном стенде определяются тепловлажностные характеристики факела выноса, образующегося в результате взаимодействия ветрового потока с капельным потоком исследуемого брызгального устройства. Психрометром измеряются температура и влажность воздуха с наветренной стороны брызгального устройства (вне капельного потока) и температура и влажность воздуха в тепловлажностном факеле через определенное расстояние по направлению его движения. Измерения по ходу факела, проводимые, например, через 10 м, заканчиваются, когда температура и влажность воздуха окажутся равными температуре и влажности воздуха с наветренной стороны брызгального устройства, т. е. когда увлажненный и нагретый воздух полностью диссипируется в окружающей атмосфере.  [c.62]

Математическая модель процесса взаимодействия капельного потока с воздушной средой приземного слоя атмосферы, приведенная в гл. 2, не учитывает спектр капель в факелах разбрызгивания. Тепловые и аэродинамические характеристики учитывались экспериментально определяемыми объемными коэффициентами тепло- и массоотдачи. Создание математической модели факела разбрызгивания значительно расширяет возможности математического моделирования изучаемого процесса. С помощью уравнения движения одиночной капли в поле сил тяжести и заданной функции распределения капель по размерам были рассчитаны локальные скорости капель как функция времени [12]. По траекториям капель и дальности их полета определялась локальная плотность орошения. Результаты расчетов показали, что протяженность области выноса капель Хтгх существенно зависит от скорости ветра при w = = 2 м/с ЛГтах = 20,5 М если Ш = 18 м/с, то Хтах = 2380 м и при этой скорости ветра 95% осадков выпадает на расстоянии 231 м. Непосредственные наблюдения за выпадением капель на небольших брызгальных бассейнах и брызгальных каналах [27, 39] показали, что на расстоянии 2—6 м от границы бассейна обнаружены ледовые образования, имеющие вид торосов высотой 0,7 м ледяная корка и изморозь покрывали участок  [c.125]

Определенным сдерживающим фактором при оценке влияния брызгального бассейна на окружающую среду является отсутствие приборов и инструментов, с помощью которых можно было бы получить количественные характеристики потоков теплоты и влаги, особенно капельной влаги. Известны устройства для измерения влажности типа СИВ-3 и ЭИВ, область применения которых ограничивается фиксацией влажности облаков и туманов. Эти приборы не обладают достаточной чувствительностью при влажности воздушной среды, близкой к полному насыщению, сложны в эксплуатации, поэтому мало пригодны для исследований в натурных условиях. С учетом отмеченного устройство для фиксации капельной влаги, разра-  [c.126]

Вторым способом уменьшения выноса капель является рациональная компоновка разбрызгивателей по площади водосборного бассейна, предусматривающая удаление крайних сопл от уреза воды на расстояния, гарантирующие задержание большей части выносимого расхода воды при средних значениях скоростей ветра. Известно, что распределение удельных плотностей орошения по направлению ветра подчиняется экспоненциальному закону наибольший сносимый расход воды выпадает в виде капель на отрезке пути, равном 15—30 м. При компоновке брызгального бассейна конкретного объекта необходимо учитывать розу ветров, морфологические характеристики местности, застроенность территории, особенности климата, параметры приземного слоя атмосферы, гидроаэротермнческий режим оборотной системы водоснабжения ТЭС или АЭС.  [c.128]


Смотреть страницы где упоминается термин Брызгальные бассейны характеристика : [c.34]    [c.61]    [c.138]    [c.139]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.272 ]



ПОИСК



Бассейн

Брызгальные бассейны

Способ определения термических характеристик брызгальных бассейнов



© 2025 Mash-xxl.info Реклама на сайте