Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Опыты Вавилова

Аналогичные опыты с квантами видимого света затруднены тем, что кванты эти малы. Однако к световым квантам очень чувствителен глаз хотя глаз не реагирует на один отдельный квант, но опыты показывают, что необходимое для минимального светового ощущения число квантов в секунду не очень значительно. По измерениям С. И. Вавилова, в области максимальной чувствительности глаза (550 нм) для отдохнувшего глаза пороговая чувствительность в среднем составляет около 200 квантов, падающих за 1 с на зрачок наблюдателя. В этих условиях, как показали опыты Вавилова, удается наблюдать флуктуационные колебания светового потока, имеющие ясно выраженный статистический характер. Хотя в таких опытах и нельзя однозначно отделить квантовые флуктуации светового потока от флуктуаций, связанных с физиологическими процессами в глазу, тем не менее и они могут рассматриваться как подтверждающие квантовый характер явления кроме того, эти опыты дают результаты, существенные для исследования свойств живого глаза. В частности, с их помощью удалось установить, что число квантов, которые должны поглощаться в сетчатке при пороговом раздражении, раз в 9—10 меньше числа квантов, падающих на зрачок, и составляет примерно 20 в секунду.  [c.643]


В соответствии с качественными соображениями о роли вынужденных переходов возбужденные атомы уменьшают величину коэффициента поглощения. С некоторыми экспериментальными проявлениями этого обстоятельства мы уже встречались ранее при обсуждении отрицательной дисперсии (см. 156) и опытов Вавилова, посвященных зависимости коэффициента поглощения от интенсивности света (см. 157).  [c.740]

Экспериментальные исследования квантовых флуктуаций слабых световых потоков были проведены в 30-х гг. Вавиловым с сотрудниками. В качестве приемника излучения в опытах Вавилова был использован человеческий глаз, адаптированный к темноте. Чувствительность полностью адаптированного глаза очень велика. Он обладает способностью получать световое впечатление при попадании на него за 0,1 с лишь нескольких десятков световых квантов. Важным свойст-  [c.164]

До создания лазеров этот принцип не подвергался сомнению и считался надежно подтвержденным всей совокупностью экспериментальных и теоретических данных о распространении света в веществе. Известно лишь несколько работ, в которых высказывалась мысль о том, что принцип линейности в оптике следует рассматривать, как первое приближение в описании оптических явлений, и предпринимались попытки обнаружить оптические эффекты, выходящие за рамки этого приближения. Уже упоминалось об опытах Вавилова (1920) по проверке линейности закона поглощения света веществом, аналитическим выражением которого является известный закон Бугера — Ламберта — Бера (см. 21.6). И хотя в этих опытах был использован очень широкий диапазон интенсивностей световых потоков, никаких отклонений от закона Бугера — Ламберта — Бера не было обнаружено. Причина неудачи заключалась в низкой спектральной плотности  [c.298]

Опыты Вавилова. Флуктуации интенсивности светового потока в опытах Вавилова регистрировались непосредственно человеческим глазом, обладающим чрезвычайно большой чувствительностью. Поэтому необходимо сделать несколько замечаний о возникновении зрительного ощущения. Оно возникает при попадании света на сетчатую оболочку глаза. В сетчатке глаза имеются воспринимающие элементы двух типов колбочки и палочки. Колбочки в основном сосредоточены в областях сетчатой оболочки вблизи оптической оси глаза и обеспечивают цветовое зрение. Палочки же сосредоточены главным образом в периферических областях сетчатой оболочки глаза, дальше от оптической оси, и обеспечивают серое периферическое или сумеречное зрение, которое не различает цветов. Однако чувствительность палочек во много раз больше, чем чувствительность колбочек.  [c.29]


Схема опытов Вавилова  [c.30]

Свет от источника И в опытах Вавилова (рис. 13) проходит через отверстие в диске D и попадает в фильтр Ф, который пропускает лишь волны с определенной длиной волны (в опытах использовался зеленый свет). Затем, пройдя через коллиматор К, свет попадает в глаз. Кроме того, на пути света поставлен фильтр, не изображенный на схеме, с помощью которого можно непрерывно изменять интенсивность света. Глаз фокусируется на источник В слабого света. Благодаря этому луч света, проходящий через отверстие диска, попадает на периферический участок сетчатой оболочки глаза. Диск D с помощью двигателя вращается с частотой 1 об/с. Форма и площадь отверстия в диске таковы, что свет может проходить в него в течение Vio времени оборота диска, а в течение 0,9 времени оборота свет в глаз не попадает и глаз отдыхает. Таким образом, при вращении диска создается последовательность вспышек длительностью 0,1 с с интервалами 0,9 с между вспышками.  [c.30]

Интерпретируем эти результаты с точки зрения квантовых представлений о поглощении света. При поглощении световая волна переводит молекулу (атом) с основного энергетического уровня на возбужденный уровень увеличивая тем самым запас поглощенной энергии. Способность молекулы поглощать свет в возбужденном состоянии иная, чем в основном. Если в опытах Вавилова коэффициент поглощения оставался одним и тем же при всех интен-  [c.550]

О зависимости коэффициента поглощения от интенсивности света. В основе вывода закона Бугера лежит основной принцип линейной оптики — независимость характера оптических явлений (в данном случае поглощения) от интенсивности света. Поэтому естественно, что он будет верным при слабых световых полях. Проверка закона Бугера при разных интенсивностях была проведена С. И. Вавиловым. Им на проведенных в широких пределах интенсивности опытах было обнаружено некоторое отступление от закона Бугера. В 1925 г. С. И. Вавилову и В. Л. Левшину удалось наблюдать уменьшение поглощения света большой интенсивности при распространении в среде (в урановом стекле).  [c.282]

Одним из классических опытов, подтверждающих квантовую природу света, является известный опыт Вавилова.  [c.348]

Описанные опыты С. И. Вавилова подтвердили фотонную природу света.  [c.349]

Рис. 18.3. Схема опыта С. И. Вавилова для выяснения внутренней структуры естественного света. Рис. 18.3. Схема опыта С. И. Вавилова для выяснения <a href="/info/7623">внутренней</a> структуры естественного света.
Прекрасное изложение этих многочисленных опытов можно найти у С. И. Вавилова, Экспериментальные основы теории относительности. Собрание сочинений, т. IV, Изд. АН СССР, 1956 г.  [c.453]

Вывести закон поглощения плоской волны (закон Бугера), исходя из предположения, что в слое данной толщины dx поглощается определенная часть падающего света, т. е. что коэффициент поглощения k не зависит от интенсивности света (это допущение проверено на опыте в очень широком интервале интенсивностей С. И. Вавиловым).  [c.902]

Изучение этих флуктуаций не только демонстрирует существование фотонов, но и позволяет исследовать их статистические свойства. Такие опыты были проведены С. И. Вавиловым (1891-1951).  [c.29]

Обязать Физический институт Академии наук СССР (тт. Вавилова и Векслера) представить к 1 ноября 1949 г. в Совет Министров СССР предложения по вопросу о проектировании и строительстве установки С-100 на основании изучения опыта работы установки С-25  [c.293]

При высоких темп-рах и низкой плотности можно пренебречь столкновениями ч-ц с ч-цами в П. Однако в случае, когда в П. возбуждены волны к.-л. типа (см. ниже), необходимо учитывать столкновения ч-ц с волнами. При не слишком больших амплитудах колебаний в П, подобные столкновения , как и при далёких пролётах, сопровождаются малыми изменениями импульса ч-ц, и член С(/) сохраняет свой диффузионный вид с тем отличием, что коэфф. Ь определяется интенсивностью волн. Важнейшим результатом кинетич, описания П. является учёт вз-ствия волны с группой т. н, резонансных частиц, скорости к-рых совпадают со скоростью распространения волны. Именно эти ч-цы могут наиболее эффективно обмениваться с волной энергией и импульсом. В 1946 Л. Д. Ландау предсказал возможность основанного на таком обмене бесстолкновительного затухания ленгмюровских волн, впоследствии обнаруженного в опытах с П. Если направить в П. дополнит, пучок ч-ц, то подобный обмен может приводить не к затуханию, а к усилению волн. Этот эффект в известном смысле аналогичен Черенкова — Вавилова излучению.  [c.538]


Опыты Вавилова 348, 349 Освещенность 14 Отражение 4, 47, 60 —, аакон 47, 48, 168, 169 —, коэффициент 52, 53, 65, 102 Отражение от поверхности металла 60, 61, 63  [c.428]

Первоначальная цель опытов Вавилова и Черенкова сводилась к изучению люминесценции растворов различных веществ под действием у-излучения. Было замечено, что в этих условиях опыта сами растворители (вода, бензол и др.) испускают слабое свечение, характеризующееся особыми свойствами (направленность и поляризация излучения, сконцентрированного в некоем конусе), отличающими ого от обычной люминесценции. Было выяснено, что фактически свечение вызывается не у-излучением, а сопутствующими ему быстрыми р-электронами. При истолковании эффекта удалось установить, что он имеет м сто лишь в том случае, когда и — скорость электронов (в более поздних опытах использовались протоны, ускоренные в синхро4)азотроне рис. 4.23) больше фазовой скорости электромагнитной волны в исследуемом веществе. Таким образом наблюдалась аналогия явления из газовой динамики — снаряд обгоняет созданную им волну давления.  [c.172]

Однако следует принять во внимание, что при поглощении света молекула переходит в новое, возбужденное состояние, запасая поглощенную энергию. Пока она находится в таком состоянии, ее способность поглощать свет изменена. То обстоятельство, что в опытах Вавилова закон Бугера соблюдался при самых больших интенсивностях, доказывает, что число таких возбужденных молекул в каждый момент остается незначительным, т. е. они очень короткое время находятся в возбужденном состоянии. Действительно, для веществ, с которыми были выполнены указанные опыты, его длительность не превышает с. К этому типу относится огромное большинство веществ, для которых, следовательно, справедлив закон Бугера. Выбрав специально вещества со значительно ббльщим временем возбужденного состояния, Вавилов мог наблюдать, что при достаточно большой интенсивности света коэффициент поглощения уменьшается, ибо заметная часть молекул пребывает в возбужденном состоянии. Эти отступления от закона Бугера представляют особый интерес, так как они представляют собой исторически первые указания на существование нелинейных оптических явлений, т. е. явлений, для которых несправедлив принцип суперпозиции. Последующие исследования привели к открытию больщого класса родственных явлений, содержание которых излагается в гл. XL и XLI. Таким образом, закон Бугера имеет ограниченную область применимости. Однако в огромном числе случаев, когда интенсивность света не слишком велика и продолжительность пребывания атомов и молекул в возбужденном состоянии достаточно мала, закон Бугера выполняется с высокой степенью точности.  [c.566]

В связи с обсуждением опытов Вавилова м ы обращали внимание на изменение числа поглощающих частиц под влиянием мощного падающего излучения. Однако это не единственный эффект, имеющий место при больших интенсивностях света. В 156 подчеркивалась тесная связь законов поглощения и дисперсии с представлением об атоме как о гармоническом осцилляторе, заряды которого возвращаются в положение равновесия квазиупругой силой. Если интенсивность света, а следовательно, и амплитуда колебаний зарядов достаточно велика, то возвращающая сила уже не будет иметь квазиупругий характер, и атом можно представить себе как ангармонический осциллятор. Из курса механики известно, что при раскачивании такого осциллятора синусоидальной внешней силой (частота ш) в его движении появляются составляющие, изменяющиеся с частотами, кратными со, — двойными, тройными и т. д. Пусть теперь собственная частота осциллятора соо. подсчитанная в гармоническом приближении, совпадает, например, с частотой 2ш. Энергия колебаний зарядов в этом случае особенно велика, она передается окружающей среде, т. е. возникает селективное поглощение света с частотой, равной со = /2 0o. Таким образом, спектр поглощения вещества, помимо линии с частотой о),,, должен содержать линии с частотами, равными /гСОо, а также /зй)(, и т. д. Коэффициент поглощения для этих линий, как легко понять, будет увеличиваться с ростом интенсивности света.  [c.570]

В-третьих, физический смысл закона Бугера—Ламберта — Бера состоит в том, что коэффициент ноглоще-иия не зависит от интенсивности падающего света. Согласно Вавилову изменение интенсивности света в щи-роких пределах (примерно в раз) не нарушает закона Бугера — Ламберта — Бера. Однако следует иметь в виду, что при поглощении света молекула переходит в новое возбужденное состояние, приобретая запас поглощенной энергии. Находясь в таком состоянии, молекула имеет другую иоглощательггую способность. То обстоятельство, что в опытах Вавилова закон Бугера — Ламберта — Бера соблюдался при больших интенсивностях, показывает, что число таких возбужденных молекул в каждый момент остается незначительным. Существенные отступления от закона Бугера — Ламберта — Бера наблюдаются при очень больших (лазерных) интенсивностях света.  [c.101]

Рис. 26.10, Схема опыта Вавилова по паблюдепшо квантовых флуктуаций светового потока Рис. 26.10, Схема опыта Вавилова по паблюдепшо <a href="/info/407094">квантовых флуктуаций</a> светового потока
Выше уже отмечались исследования С. И. Вавилова зависимости коэс1х ициента поглощения от интенсивности поглощаемого света (см. гл. ХХУИ1, ХЬ). В книге Микроструктура света , обобщая свои наблюдения, относящиеся к 20 гг., и последующие опыты, Вавилов писал Нелинейность в поглощающей среде должна наблюдаться не только в отношении абсорбции. Последняя связана с дисперсией, поэтому скорость распространения света в среде, вообще говоря, также должна зависеть от световой мощности. По той же причине в общем случае должна наблюдаться зависимость от световой мощности, т. е. нарушение принципа суперпозиции, и в других оптических свойствах среды — в двойном лучепреломлении, дихроизме, вращательной способности и т. д. . Последующее развитие нелинейной оптики, об>условленное экспериментальным исследованием распространения лазерного излучения, не только подтвердило общие соображения Вавилова о мно-гообрази И возможных нелинейных явлений, но и привело к обнаружению всех перечисленных им конкретных эффектов. Поэтому Вавилов по праву признан основоположником нелинейной оптики.  [c.820]


А. Ф. Иоффе показал, что отдельные акты эмиссии электронов с пылинок висмута при их облучеш1и светом следовали друг за другом через нерегулярные промежутки времени, что соответствовало предположениям о случайном попадании на пылинки фотонов. С еще большей убедительностью корпускулярные свойства света были продемонстрированы в опытах С. И. Вавилова по флуктуациям слабьгс световых потоков.  [c.159]

Вавилова излучения. Сила, действующая на носители со стороны нарастающего фононного потока, имеет направление, противоположное дрейфу носителей. В результате происходит их эффективное торможение, приводящее К неоднородному перераспределению электрич. поля в образце (рис. 3, а) (образуется т. н. акустоэлектрич. 1 омен) и падению полного тока в нём (рис. 3, 6). На опыте этот эффект обычно наблюдается по отклонению электрич. тока через образец от его омич, значения J = gUL, где U — приложенное к об-раяцу напряжение.  [c.52]

Однако дальнейшие исследования показали, что диапазон изменений интенсивности, в которых справедлив закон Бугера, зависит от времени жизни возбужденных состояний (т/ ). В частности, для опытов С. И. Вавилова ik < 10" с. Если же TfV больше, то наблюдается отклонение от закона Бугера, что обусловлено накоплением частиц в возбужденном состоянии. При этом появля ется 3aBH iiM0 Tb коэффициента поглош.ения от интенсивности падаюш его света.  [c.30]

В заключение следует отметить, что внимание автора на возможности магнитострикционных излучателей с ферритовыми вибраторами обратил А. Р. Геннинг. В экспериментальной работе большую помощь оказали бывшие студенты Р.-Э. Е. Шафир, В-Э. Г. Хохловкин, Ф. Ф. Вавилова, Н. В. Назаров, Е. С. Мамаева и ряд других. Многие учителя физики г. Глазова приложили немало усилий, чтобы вместе со школьниками повторить некоторые из описанных ниже приборов и опытов. Всем им, без чьего труда и доброжелательной поддержки было бы невозможно написание книги, автор выражает глубокую благодарность.  [c.6]

В классических опытах С. И. Вавилова и его сотрудников [5, 6] малое число квантов п обуславливалось малым размером источника света (3 или 6 ), небольшой его яркостью, краткостью световой вспышки (0,1 с) и введением поглощающих светофильтров. Наблюдения велись в полной темноте после длительной темновой адаптации. Экспериментально определялась вероятность увидеть вспышку в зависимости от среднего числа п фотонов в ней. Число п заранее неизвестно, но оно пропорционально яркости вспышки  [c.95]


Смотреть страницы где упоминается термин Опыты Вавилова : [c.348]    [c.167]    [c.264]    [c.256]    [c.304]    [c.95]    [c.278]    [c.278]   
Смотреть главы в:

Оптика  -> Опыты Вавилова


Оптика (1977) -- [ c.348 , c.349 ]

Атомная физика (1989) -- [ c.29 ]



ПОИСК



By опыт

Н.И. Вавилова

Опись

Флуктуации интенсивности световою потока. Опыты Вавилова. Флуктуации интенсивности во взаимно когерентных волнах. Флуктуации интенсивности в поляризованных лучах. Опыт Брауна и Твисса Поляризация фотонов



© 2025 Mash-xxl.info Реклама на сайте