Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поток Коэффициент жидкости — Уравнение неразрывности

При фиксированных значениях i и 2 уравнение неразрывности и выражение для коэффициента окружной составляющей равнодействующей позволяют получить для изоэнтропического потока зависимость (A,i). Результаты такого рода расчетов коэффициентов окружного усилия в диффузорной решетке, отнесенных к соответствующим значениям коэффициента с в потоке несжимаемой жидкости, приведены на рис. 10.45, подтверждают высказанные выше общие соображения и указывают на довольно существенное относительное изменение окружной составляющей равнодействующей с изменением числа М[, особенно в решетке с малым поворотом потока.  [c.68]


Распределение температур в потоке жидкости может быть установлено из уравнения движения, уравнения переноса теплоты и уравнения неразрывности. Как это очевидно из гл. И, при постоянных коэффициентах вязкости и теплопроводности уравнение движения оказывается не связанным (т. е. расцепленным ) с уравнением переноса теплоты, вследствие чего решение уравнения движения не зависит от температурного поля.  [c.439]

Уравнения (4-24) — (4-28) можно упростить. Ранее отмечалось, что капельки конденсата, возникающие в перенасыщенном паре, весьма малы и скорость их близка к скорости паровой составляющей потока (коэффициент скольжения w lw X 1). Таким образом, можно положить = = Wa — w. Кроме того, мало абсолютное количество конденсата, выпадающего в зоне перенасыщенного состояния, и так как в рассматриваемом интервале параметров плотность жидкости существенно превышает плотность пара, то доля сечения канала, занимаемая конденсированной фазой, столь мала, что допустимо считать F. В этих условиях уравнение неразрывности (4-24), записанное в дифференциальной форме, приобретает следующий вид  [c.148]

Выражение, полученное из основного уравнения равномерного движен[1я жидкости в предположении, что удельное сопротивление трению равно yv . 8g, откуда коэффициент Шези —y8g k. Тогда, согласно уравнению неразрывности потока и уравнению Шези, расход будет равен  [c.51]

В общем случае процесс теплоотдачи при свободной конвекции определяется системой уравнений теплопроводности, движения и неразрывности потока жидкости. При этом в уравнении движения учитывается подъемная сила, обусловленная переменной плотностью среды. Эта сила пропорциональна коэффициенту объемного расширения среды р, умноженному на разность температур в данной точке потока и в некоторой характерной точке. Если процесс протекает в неограниченном пространстве, то в качестве начальной точки отсчета температур принимается температура на большом удалении от поверхности теплообмена (температура невозмущенного потока).  [c.212]

Если в зоне конденсации нет Kopi уравнения, то Л1мии = 7- На енове вышеприведенных уравнений в работе [Л. 5-98] был проведен численный расчет для натриевой тепловой трубы. Исходные данные радиус отверстий фитиля 0,1 мм, пористость 0,5, коэффициенты конденсации и аккомодации = 0,1 р = 0,1. Результаты расчетов приведены на рис. 5-60 для трех значений температуры при пропорциональном изменении каждой зоны lift 0,36 ljl = 0,5, Ri = = 1 см). При работе трубы в вертикальном положении (кривая 4) Смаке увеличивается мало по сравнению с горизонтальным расположением трубы. Одновременно с рассмотренным методом расчета сделаем упрощенный расчет тепловой трубы. Теория расчета приведена в 1-м издании справочника. Рассмотрим стационарный режим работы тепловой трубы. Примем следующие допущения 1) площадь конденсатора значительно больше площади испарителя 2) тепловой поток, температура жидкости и пара постоянны по всей длине х конденсатора, причем пар имеет постоянное давление р 3) пар конденсируется на поверхности конденсатора и имеет постоянную скорость и , перпендикулярную к поверхности 4) пористый фитиль является изотропным и несжимаемым. Тогда получим общее интегральное уравнение энергии (неразрывности) импульса в виде  [c.396]


Здесь величины с нижним индексом О относятся к набегающему потоку, величины с чертой — безразмерные I — характерный размер, X, у — координаты, й, у — скорость в продольном и поперечном направлениях, р — плот210Сть, Т — температура, р и Р — коэффициенты динамической вязкости и теплопроводности. Будем считать, что подводимый к поверхности тела тепловой поток (кдТ/ду) полностью идет на процесс фазового перехода, а проникновение расплавленной массы в область 2 аналогично вдуву жидкости через линию р = 0. В переменных (1.1) уравнения движения, неразрывности и энергии в областях 1 и 2, граничные условия на поверхности пластины и на внешней границе пограничного слоя, а также соотношения на поверхности разрыва, отделяющей расплавленную массу от газа, можно привести к виду (далее черточки у безразмерных величин опущены)  [c.351]


Справочник машиностроителя Том 2 (1955) -- [ c.463 , c.464 , c.465 ]



ПОИСК



283 — Уравнения жидкости

Жидкости Уравнение неразрывности

Жидкость неразрывная

Коэффициент уравнения

Неразрывности уравнение—см. Уравнение неразрывности

Поток жидкости

Поток жидкости - Уравнение неразрывности

Поток — Коэффициент кинетической жидкости — Уравнение неразрывности

У неразрывности

Уравнение для потока

Уравнение неразрывное

Уравнение неразрывности

Уравнение неразрывности потока

Уравнениие неразрывности



© 2025 Mash-xxl.info Реклама на сайте