Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВЫ УСТРОЙСТВА ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Изложены основы устройства летательных аппаратов (ЛА) с позиций системного проектирования, где ЛА представляется как часть большой технической системы (БТС). Рассмотрены принципы осуществления управляемого полета ЛА, состав и характеристики бортового оборудования, систем управления, двигательных установок. Особое внимание уделено характеристикам конструкции, объединяющей все подсистемы в единое целое. Изложены принципы конструирования агрегатов ЛА, приведены алгоритмы выбора параметров отдельных узлов и деталей с учетом сложного взаимодействия с окружающей средой. Намечены пути решения задач при автоматизированном конструировании ЛА.  [c.2]


В соответствии с изложенным выше системным подходом создания ЛА настояш ий учебник состоит из двух разделов Основы устройства летательных аппаратов и Основы конструирования летательных аппаратов , материал которых является основополагающим для изучения других профилирующих дисциплин данной отрасли промышленности.  [c.4]

ОСНОВЫ УСТРОЙСТВА ЛЕТАТЕЛЬНЫХ АППАРАТОВ  [c.8]

Сосуды кислотоупорные, герметизирующие и уплотняющие элементы для их затворов В 65 D 53/10 открывание с помощью различных устройств и приспособлений В 67 В 7/00) Спальные (вагоны В 61 D 1/(02-08) устройства (в ж.-д. вагонах В 61 D 31/00 в транспортных средствах В 60 Р 3/38)) Спасательные люки в крышах или днищах транспортных средств В 60 J 9/02 средства, используемые на летательных аппаратах В 64 D 25/00-25/20) Спекание <В 29 С (для изготовления изделий из пенопластов 67/04 порошков пластических материалов 67/04) исследование процесса спекания G 01 N 25/(02-12) металлического порошка В 22 F (3/(10, 12-16) изготовление заготовок спеканием 7/00-7/08 при получении сплавов С 22 С 1/04) Спирали (изготовление навиванием проволоки В 21 F 3/00-3/12 использование для скрепления листов В 42 В 5/12 проволочные, использование для изготовления трубчатых элементов теплообменных аппаратов F 28 F 1/36) Спиральные [запорные элементы клапанов F 16 К 1/40 канавки, нарезанные с помощью строгальных или долбежных станков D 5/02 поверхности токарные станки для обработки В 5/46-5/48) В 23 <(В 51/02 изготовление С 3/32, Р 15/32)) пружинные двигатели F 03 G 1/04 сверла (ковка В 21 К 5/04 изготовление В 24 В 3/26, 19/04)] Спицы колесные (В 60 В 1/00-1/14, 5/00 изготовление из проволоки В 21 F 39/00) рулевых колес В 62 D 1/08) Сплавы [С 22 С анализ G 01 N для легирования железа и стали С 22 С 35/00 на основе железа <С 22 С 33/(00-12) общие способы получения 33/00 прокатка В 21 В 3/02 термообработка С 21 D 6/00-6/04) цветных металлов С 22 <С 1/00-32/00 изменение физической структуры особыми физическими способами F 3/00-3/02)]  [c.181]

Эти достижения послужили основой дальнейшего развития гироскопических систем угловой стабилизации. Однако в случаях, когда необходимо было стабилизировать тело большой массы (самолет, ракету, космический летательный аппарат), предпочтение было отдано системам, в которых возмущающие моменты парируются действием рулевых органов, управляющих силами, внешними по отношению к объекту. За гироскопическими устройствами здесь сохраняется роль измерителя в системе автоматического управления угловым положением объекта. Исключение составляют некоторые космические летательные аппараты, где оказывается целесообразным создавать управляющие моменты сил не только внешними рулевыми органами, но и путем изменения кинетического момента внутренних частей системы — регулированием ориентации либо скорости вращения гироскопов.  [c.174]


Основой экспериментальной аэродинамики являются понятия и определения, относящиеся к созданию и эксплуатации аэродинамических установок и измерительных устройств. Этому посвящены две первые главы, в которых последовательно рассматриваются принципы устройства и конкретные конструкции дозвуковых и сверхзвуковых аэродинамических труб, приборов и аппаратов для измерения скорости, давления, трения, суммарных аэродинамических сил и моментов, а также теплопередачи при исследовании в этих трубах обтекания моделей летательных аппаратов и их отдельных элементов (крыло, корпус, оперение).  [c.4]

В основе экспериментальных исследований в аэродинамике лежит использование воздушного (газового) потока аэродинамических труб для целей измерения параметров обтекания моделей летательных аппаратов. В связи с этим особое значение имеют подбор наиболее совершенных измерительных приборов и устройств, правильная их эксплуатация, разработка и реализация правил проведения эксперимента, т. е. все то, что объединяют под общим понятием техники и методики измерений.  [c.106]

ОСНОВЫ УСТРОЙСТВА и КОНСТРУИРОВАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ  [c.1]

Наряду с установившимся обтеканием приводятся сведения об их нестационарных аэродинамических характеристиках. Гл. 11 содержит задачи и вопросы, относящиеся к аэродинамике летательных аппаратов, представляющих собой комбинации различных элементов, таких, как корпус, крыло, оперение, рулевые устройства. В ней изучаются в основном интерференционные явления, определяющие характер аэродинамического взаимодействия между отдельными элементами и величину суммарного силового влияния обтекающей среды на летательный аппарат в целом. На основе данных о неустановившемся обтекании изолированных крыльев и тел вращения рассматриваются суммарные ь естационарные характеристики в виде аэродинамических производных.  [c.5]

У бериллия очень высокие удельные прочность и жесткость. По этим характеристикам, особенно по удельной жесткости, Be значительно превосходит высокопрочные стали и сплавы на основе алюминия, магния, титана. Бериллий обладает большой скрытой теплотой плавления и очень высокой скрьггой теплотой испарения. Высокие тепловые и механические свойства позволяют использовать бериллий в качестве теплозащитных и конструкционных материалов космических летательных аппаратов (головные части ракет, тормозные устройства космических челноков, оболочки кабин космонавтов, камеры сгорания ракетных двигателей и т.д.). Высокая удельная жесткость в сочетании со стабильностью размеров, высокой теплопроводностью и др. свойствами дают возможность использовать бериллий при создании высокоточных приборов (детали инерциаль-ных систем навигации - гироскопов и др.).  [c.115]

Леонардо да Винчи прекрасно понимал, что, пока машина не заработала, она бездействует, она-мертва. Именно поэтому основу дальнейшего развития процесса механизации он видел прежде всего в реально существующей и работающей машине-двигателе. Подобный ход рассуждений закономерно привел его к вопросу о перпетуум мобиле. Оказывается, однако, что все же гораздо больше внимания Леонардо уделял не этой проблеме, а практическим задачам, и в частности, усовершенствованию ветряных и водяньк колес. Так, от предложенной им гидравли-теской турбины оставался всего лишь один шаг до винтового аппарата вертикального взлета. Но даже здесь великий инженер не упустил возможность, которую предоставила ему его врожденная изобретательность, и... сумел разработать теорию подъемной силы на несущих поверхностях вращающегося винта. Он изобрел еще великое множество других механизмов и устройств, объединявшихся одним общим признаком,-Леонардо никогда не приступал к проектированию будущей машины, тщательно не разработав ее полную теорию. Например, прежде чем взяться за чертежи своего летательного аппарата, он подробно изучил анатомию птиц и характер их полета. Затем он рассчитал длины кинематических плеч, определил величины сил, действующих на них, и наконец пришел к выводу, что человеческие руки слишком слабы для того, чтобы опираться о воздух с помощью крыльев.  [c.30]


Смотреть страницы где упоминается термин ОСНОВЫ УСТРОЙСТВА ЛЕТАТЕЛЬНЫХ АППАРАТОВ : [c.179]    [c.336]    [c.2]   
Смотреть главы в:

Основы устройства и конструирования летательных аппаратов  -> ОСНОВЫ УСТРОЙСТВА ЛЕТАТЕЛЬНЫХ АППАРАТОВ



ПОИСК



Летательные аппараты



© 2025 Mash-xxl.info Реклама на сайте