Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ жидкости через отверстия

При растекании потока перед решеткой линии тока искривляются. Если в качестве распределительного устройства взята плоская (тонкостенная) решетка, у которой в отличие, например, от трубчатой решетки проходные отверстия не имеют направляюш,их стенок (поверхностей), то возникающее поперечное (радиальное) направление линий тока, т. е. скос потока, неизбежно сохранится и после протекания жидкости через отверстия. Это вызовет дальнейшее растекание, т. е. расширение струйки 1 и падение ее скорости за счет сужения струйки 2 и повышения ее скорости. Чем больше коэффициент сопротивления решетки, тем резче искривление линий тока при растекании жидкости по ее фронту, а следовательно, за решеткой значительнее расширение сечения и соответственно уменьшение скорости струйки 1 за счет струйки 2. Вследствие этого после определенного (критического или оптимального) значения коэффициента сопротивления опт плоской решетки, при котором поток за ней полностью-выравнивается, т. е. скорости в обеих струйках становятся одинаковыми, дальнейшее увеличение приводит к тому, что за решеткой скорость струйки 2 возрастает даже по сравнению со скоростью струйки /, возникает новая деформация поля скоростей в виде обращенной или перевернутой неравномерности (рис. 3.3).  [c.80]


Допустим, что скорость одной из двух струек перед решеткой равна нулю — случай полной неравномерности, имеющей место при набегании на решетку узкой струи (рис. 3.4). Все описанное справедливо и для этого случая вследствие торможения при набегании на решетку узкая струя будет растекаться по ней в поперечном направлении растекание будет продолжаться и после протекания жидкости через отверстия плоской решетки в виде отдельных струек. Однако по мере увеличения коэффициента сопротивления решетки поперечное (радиальное) растекание струек будет непрерывно расти, а следовательно, будет возрастать до бесконечности и степень растекания жидкости (расширения потока) за решеткой, так что скорость потока будет стремиться к нулю. При этом степень растекания  [c.80]

Задача 3.8. При истечении жидкости через отверстие диаметром do==10 мм измерены расстояние х = = 5.5 м (см. рис.), высота у = 4 м, напор Н = 2 м и расход жидкости Q = 0,305 л/с. Подсчитать коэффициенты сжатия е, скорости ф, расхода pi и сопротивления Распределение скоростей по сечению струи считать равномерным. Сопротивлением воздуха пренебречь.  [c.51]

Для маловязкой жидкости величина коэффициента р расхода через отверстия с острыми кромками зависит главным образом от сжатия струи и лишь в очень незначительной степени от гидравлического сопротивления, обусловленного сопротивлением кромок и неравномерностью поля  [c.73]

Коэффициент расхода при полном сжатии струи. Расчет подобного местного сопротивления производится по формуле Торичелли для вычисления скорости истечения реальной жидкости через отверстия в тонкой стенке  [c.26]

Опытные значения коэффициентов сопротивления для случая протекания жидкости через отверстия в тонкой стенке при отнесении к скорости в сжатом сечении лежат в пределах = 0,06—0,1.  [c.154]

Коэффициент расхода через отверстия решетки уменьшается от центра к периферии. Частично это поясняет, почему в выражении (4.71) и других при величине p множитель kiрастекание струи по фронту решетки, что равносильно уменьшению коэффициента сопротивления решетки. Кроме того, радиальное растекание потока за тонкостенной решеткой при р< цр, т. е. до образования перевернутого профиля скорости должно в реальных условиях при Вязкой жидкости происходить медленнее, чем в случае идеальной жидкости. Действительно, пока значения Ср не очень велики, основная масса струи проходит через центральную часть решетки, мало отклоняясь от оси, со скоростью, значительно превышающей скорость отклонившейся  [c.168]


Программа лабораторного практикума в соответствии с объемом излагаемого курса включает следующие работы 1) определение вязкости жидкости при помощи вискозиметра Энглера 2) снятие пьезометрической и напорной линий для трубопровода переменного сечения 3) определение числа Рейнольдса при ламинарном и турбулентном режимах движения 4) экспериментальное определение коэффициента линейного гидравлического сопротивления и коэффициентов местных сопротивлений 5) исследование истечения жидкости через различные отверстия и насадки 6) снятие характеристики центробежного насоса.  [c.306]

Задача 3.9. На рисунке показана схема устройства для исследования истечения через отверстия и насадки. Резервуар с жидкостью укреплен на двух опорах А и имеет возможность покачиваться в плоскости чертежа. При истечении из отверстия или насадка сила реакции струи выводит резервуар из положения равновесия, однако груз весом G возвращает его в это положение. Подсчитать коэффициенты сжатия струи е, скорости ф, расхода х и сопротивления t, при истечении воды, если известны размеры а= 1 м, й=1 м, диаметр отверстия do=10 мм. При опыте измерены напор Н=2 м, расход Q = 0,305 л/с и вес груза 0 = 1,895 Н. Распределение скоростей в сечении струи принять равномерным.  [c.51]

Увеличение расхода при течении жидкости через насадок обусловлено тем, что сжатие струи на выходе из насадка отсутствует. Однако при этом скорость потока жидкости несколько меньше вследствие большего вязкостного сопротивления. Так как на выходе из насадка диаметр струи равен диаметру отверстия, то е = = 1, а следовательно, х = ф. Значения этих коэффициентов в случае маловязких жидкостей можно принимать равными х = = Ф = 0,82.  [c.30]

Жидкость плотностью р под избыточным давлением рмо подается по трубе с площадью поперечного сечения а> к баллону. На трубе перед баллоном установлен кран с коэффициентом сопротивления 4 Из баллона жидкость вытекает в атмосферу через отверстие площадью соо с расходом Q.  [c.97]

Регулирование посредством изменения перепада давления пара и жидкости может осуществляться на любом температурном уровне как для криогенных, так и для высокотемпературных тепловых труб. Схема тепловой трубы, в которой используется" принцип регулирования термического сопротивления посредством дросселирования пара, изображена на рис. 5.1 (схема 2.1). Пар из зоны испарения в зону конденсации может пройти только через отверстие, закрываемое клапаном. Открытие и закрытие клапана осуществляется при перемещении штока вследствие изменения объема жидкости, имеющей большой температурный коэффициент объемного расширения. На рис. 5.1 (схема 2.2) представлена другая конструкция, в которой для регулирования термического-сопротивления используется осушение канавочной капиллярной структуры. При уменьшении температуры греющего тела ниже определенного значения клапан закрывает отверстие для прохода пара, перепад давления между испарительной и конденсаторной частями увеличивается, что приводит к осушению канавочной капиллярной структуры в испарительной части, уменьшению теплоподвода к ней, открытию клапана и т. п.  [c.130]

Таким образом, нами введены в рассмотрение три коэффициента — е, ф и ц, характеризующие процесс истечения жидкости. Все они являются функцией числа Рейнольдса Re. Однако для маловязких жидкостей (воды, бензина и др.), истечение которых, как правило, происходит при больших значениях Re, эти коэффициенты практически постоянны е = 0,64 ф = 0,97 ц = 0,62. При истечении минеральных масел через круглые отверстия в области квадратичного сопротивления можно принять ц = 0,65.  [c.64]

Истечение жидкости из малых отверстий в тонкой стенке и протекание ее через насадки характеризуются постоянными (для каждого конкретного типа отверстия или насадка) значениями коэффициентов скорости ф и расхода ц. При наличии каких-либо дополнительных местных сопротивлений (повороты, колена, задвижки и т. п.) коэффициенты скорости и расхода в каждом отдельном случае будут определяться суммой сопротивлений, встречающихся по пути потока (до выходного сечения) в рассматриваемой системе. Если сумма местных потерь не очень мала по сравнению-с путевыми потерями (с потерями на трение по длине потока), то трубу называют короткой.  [c.156]


Ввиду того, что линии тока, образующие струю, подходят к круглому отверстию в резервуаре с разных направлений, а живое сечение потока здесь близко к полусфере, то при прохождении через плоскость отверстия радиальное движение жидкости частично сохраняется и происходит сжатие струи, которое исчезает на расстоянии примерно равном диаметру отверстия. Далее начинает проявляться расширение струи за счет сопротивления воздуха. Такое сжатие струи принято называть совершенным. Отношение площади струи iS к площади отверстия 5о называют коэффициентом сжатия  [c.140]

Так как условие Re idem при наличии геометрического подобия определяет кинематическое подобие напорных потоков, безразмерные характеристики последних (коэффициенты сопротивления, расхода и т. д.) являются фуикция.ми Re Это же относится и к процессам истечения через малые отверстия и насадки, на которЕ.1е весомость жидкости практически не влияет.  [c.108]

В случае истечения жидкости через большое отверстие при ламинарном режиме коэффициент расхода зависит от числа Re, т. е. Х(, = / (Re), поскольку при этом режиме местные сопротивления также зависят от числа Re. Числовые значения коэффициента расхода для различных видов брль-1НИХ отверстий, работающих в условиях ламинарного режима, устанавливаются опытным путем и приводятся в специальной литературе.  [c.131]

Жидкость вытекает из открытого бака через отверстие в его дне диаметром 10 мм при постоянном напоре И = 2,0 м. Определить коэффициенты расхода, скорости и сжатия струи (р,, ф, е), а также коэффициент сопротивления и потерю напора /1п, если сосуд вместийостью 92 л, в который вытекает жидкость, заполняется за 5 мин, а диаметр струи в сжатом сечении равен 8 мм.  [c.200]

Для оценки распределителей Я. Т. Ненько ввел некоторый критерий длины, определенный в предположении одноразмерного установившегося движения вязкой несжимаемой жидкости с непрерывно убывающим вдоль пути расходом. Г. А. Петров уточнил выражение критерия длины распределителей круглого сечения, введя в него коэффициент кинетической энергии учитывающий влияние эпюры скоростей в начальном живом сечении потока. Однако этим не исчерпываются все особенности движения реального потока в дырчатых распределителях. Как уже указывалось, на потери пьезометрического напора по длине дырчатых распределителей оказывают влияние также прерывчатый отток струй через отверстия, убывание расхода вдоль пути потока и возникновение в нем вихревых сопротивлений, обусловленных взаимодействием транзитного потока с вытекающими турбулентными струями.  [c.40]

Одним из таких струеформирующих устройств является насадок цилиндрической формы, схема которого представлена на рис. 8.7а. Такой насадок имеет длину /- (3,5 - 4,0)йо- Истечение через него равносильно истечению через отверстие в толстой стенке и потому имеет ряд особенностей. При острых входных кромках на расстоянии примерно равном внутреннему диаметру насадка йо струя сужается с коэффициентом сжатия ЕвзГ 0,64. Пространство между струйным потоком и стенками насадка заполняется жидкостью, находящейся в вихреобразном движении, аналогичном тому, которое наблюдается в застойных зонах местных сопротивлений в напорных трубопроводах. Пройдя это сечение, струя начинает постепенно расширяться, заполняя к выходу все сечение насадка. Поэтому коэффициент сжатия на выходе из насадка становится равным 1. Образование застойной зоны приводит к заметным потерям энергии, поэтому коэффициент скорости <р для такого насадка (равный коэффициенту расхода ц) составляет 0,82. В данном случае наряду с уменьшением средней скорости в сравнении с истечением из отверстия в тонкой стенке имеет место увеличение расхода жидкости. Это значит, что в самом узком сечении потока в насадке средняя скорость жидкости больше, чем при истечении из отверстия в тонкой стенке. Подобный эффект связан с возникновением разряжения в застойной зоне, величина которого при расчете коэффициента потерь по формуле (6.44) с учетом вл" 0,64 и -0,82, достигает 0,75 Н.  [c.141]

При достаточно больших значениях Re силы вязкостного трения, действующие в турбулентном потоке, становятся малыми по сравнению с силами инерции частиц жидкости (зона турбулентной автомодельности). Безразмерные характеристики потока, в частности коэф( )и-цнент сопротивления трения л и коэффициенты местных сопротивлений в этой зоне не зависят от числа Ке. что определяет наличие квадратичного закона сопротивления трубопровода. Аналогичная особенность присуща также и процессам истечения через малые отверстия и насадки, безразмерные характеристики которых (коэффициенты истечения) в зоне больших значений Ке остаются практически постоянными (квадратичная зона истечения).  [c.110]

Столь высокие значения коэффициента расхода при истечении из насадка можно объяснить при рассмотрении характерных особенностей истечения в этом случае. Поступающая в насадок струя сначала испытывает сжатие (рис. 6-8) подобно сжатию при истечении из отверстия, а вокруг сжатой струи образуется зона отжима (заштрихована на рисунке). Из зоны отжима воздух уносится потоком и в этой зоне понижается давление (образуется вакуугл, величина которого зависит от скорости движения или от напора). Понижение давления в сжатом сечении приводит к увеличению скорости в этом сечении. Но при этом появляются и некоторые дополнительные потери напора, наличие которых должно привести к уменьше нию скорости. В трубках небольшой длины влияние подсасывания жидкости вследствие понижения давления (образования вакуума) оказывает большее влияние на пропускную способность, чем добавочные сопротивления, и поэтому расход через внешний цилиндрический насадок увеличен по сравнению с расходом из малого отверстия.  [c.142]



Смотреть страницы где упоминается термин КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ жидкости через отверстия : [c.542]    [c.147]    [c.146]    [c.137]    [c.77]    [c.166]   
Справочник машиностроителя Том 2 (1955) -- [ c.4 , c.79 ]



ПОИСК



КОЭФФИЦИЕНТ СОПРОТИВЛЕНИЯ через отверстия

Коэффициент сопротивления

Коэффициенты У отверстий



© 2025 Mash-xxl.info Реклама на сайте