Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент аэродинамический момента крена

Для анализа боковой устойчивости летательного аппарата требуется совместное рассмотрение характера изменения углов крена и скольжения при одновременном действии возмущающих моментов крена М . и рыскания Му. Если после прекращения такого воздействия эти углы уменьшаются, стремясь к первоначальным значениям, имеет место боковая статическая устойчивость. Таким образом, при исследовании боковой устойчивости следует, строго говоря, рассматривать одновременно изменение аэродинамических коэффициентов и Шу. Однако в большинстве практических случаев боковую устойчивость можно разделить на два более простых вида — поперечную статическую устойчивость (устойчивость крена) и статическую устойчивость пути — и изучать их отдельно, рассматривая изменение соответствующих коэффициентов гпх у), гпу < ).  [c.35]


У современных самолетов, как правило, широкий фюзеляж без сужения хвостовой части, высокорасположенное крыло малой относительной толщины, большой угол стреловидности вертикального оперения. Все это приводит к аэродинамическому затенению вертикальное оперения на больших углах атаки, а следовательно, к уменьшению путевой устойчивости на этих углах. В то же время при наличии угла скольжения у самолета со стреловидным крылом изменяется фактический угол стреловидности для каждого из полукрыльев. Это приводит к тому, что у выдвинутого вперед полукрыла увеличивается коэффициент подъемной силы, а у отстающего уменьшается. Следовательно, возрастает момент крена Ь сторону, обратную углу скольжения, т. е. стреловидность крыла повышает поперечную устойчивость самолета. Причем поперечная устойчивость будет тем больше, чем при большем значении Су выполняется полет.  [c.221]

Основой расчетов нестационарных аэродинамических характеристик летательных аппаратов и их элементов (в частности, крыла) являются общие зависимости для аэродинамических коэффициентов. выраженные через производные коэффициента давления по кинематическим пара-,метрам. При формулировке вопросов и составлении соответствующих задач, связанных с исследованием нестационарной аэродинамики крыльев, предусмотрено нахождение как суммарных производных коэффициентов нормальной силы, моментов тангажа и крена крыльев, так и соответствующих производных для отдельных сечений (профилей).  [c.242]

Летательный аппарат совершает ускоренный полет на некоторой высоте под переменным углом атаки без крена и скольжения, вращаясь вокруг поперечной оси с угловой скоростью, изменяющейся во времени. Используя теорию размерностей найдите общие выражения для момента тангажа и соответствующего аэродинамического коэффициента в функции параметров, определяющих движение летательного аппарата.  [c.243]

С —Mo/(pfy 72) — коэффициент аэродинамического момента сечения лопасти j =Mx/[pAR QtRf]— коэффициент момента крена Afy=Mj,/[pA/ (Q/ f] — коэффициент момента тангажа  [c.7]

Аэродинамический коэффициент момента крена (поперечного момента) в задаче 9.57 отнесен к центральной (корневой) хорде Ь . Обычно этот коэффициент вычисляют по размаху крыльев I, исходя при этом из физических соображений, Б соответствии с которыми существенное влияние на аэродинамические свойства при крене оказывают поперечные раз.меры летательного аппарата, прежде всего размах кры.льев. Найдите соотношения, позволяющие осуществлять пересчет производных коэффициентов крена с одного характерного раз.мера на другой.  [c.255]


Результаты исследований. В качестве примера на фиг. 2, а представлены статические аэродинамические зависимости Су(а), т (а), т (а), полученные для модели прямоугольного крыла при а > О и а < О в интервале угла атаки от -3 до 36°. Видно, что при 15° а 28° в зависимостях с 5,(а), т/а) наблюдается гистерезис. Область гистерезиса состоит из двух соприкасающихся подобластей. Зависимость коэффициента момента крена т/а) также является гистерезисной. На фиг. 2, а приведены схемы структур течений на крыле. Незаштрихованная область / соответствует безотрывному течению, а заштрихованная // - отрывному течению. Данные визуализации подтверждают результаты весовых испытаний, указьшая на различие структур течений на крыле, соответствующих разным границам области гистерезиса. Верхняя граница в зависимостях с з,(а), т,(а) характеризуется наличием на крыле области отрывного течения в окрестности задней кромки крыла. Границы этой области с ростом а увеличиваются по размаху и по хорде.  [c.201]

Задаваясь различными значениями 6р, /р и / р, обеспечивающими требуемый момент инерции Jyp, для исходных данных с учетом принятых обозначений строим по (3.6.24) и (3.6.25) графики зависимостей di и 2 (рис. 3.6.4). С помощью этих графиков для подсчитанных значений di = 1,54-10 с и U2 = 1,06-10 с З выбираем следующие параметры роллеронов 1р = 0,096 м Ьр = 0,105 м Rp = 0,042 м. Однако таким значениям параметров соответствует новое значение коэффициента ds = 0,6. Эти расчеты подтверждают известный факт, что только аэродинамическое демпфирование оказывается недостаточным для получения заданных характеристик затухания колебаний самих роллеронов, хотя стабилизация летательного аппарата по угловой скорости крена обеспечивается. Поэтому следует прибегнуть к каким-либо дополнительным средствам демпфирования.  [c.294]

Гессоу [G.57] выполнил дальнейшее преобразование уравнений для численного определения аэродинамических характеристик несущих винтов применительно к использованию ЦВМ. Он заново вывел выражения для силы тяги, профильного сопротивления, мощности, момента тангажа и крена, касательной силы в комлевой части лопасти и коэффициентов махового движения. Был рассмотрен шарнирный винт с относом ГШ, у ло-  [c.260]


Смотреть страницы где упоминается термин Коэффициент аэродинамический момента крена : [c.7]    [c.152]    [c.573]    [c.10]    [c.167]    [c.405]    [c.795]    [c.387]   
Справочник машиностроителя Том 2 (1955) -- [ c.518 ]



ПОИСК



Аэродинамический шум

Коэффициент аэродинамически

Коэффициент момента

Коэффициент момента аэродинамического

Коэффициенты аэродинамические

Крень

Момент аэродинамический

Момент крена



© 2025 Mash-xxl.info Реклама на сайте