Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория гравитационного течения Дюпюи-Форхгеймера

Теория гравитационного течения Дюпюи-Форхгеймера. В настоящее время положения теории гравитационного течения Дюпюи-Форхгеймера являются настолько сомнительными, что обесценивают почти всю теорию, если только ее не прикладывать с большой осторожностью. Однако ее широкое применение даже в настоящее вре.ия требует дать по крайней мере краткое описание ее основных сторон. Все они, разумеется, вытекают из допущений, сделанных Дюпюи в 1863 г., что-для малых углов наклона свободной поверхности при гравитационном течении линии тока могут быть приняты горизонтальными и должны быть связаны со скоростями, пропорциональными наклону свободной поверхности, и не зависят от глубины (цилиндрическое течение). Эти два допущении позволили Дюпюи вывести фор.мулу для радиального  [c.297]


Следует заметить также, что основные диференциальные уравнения (4), (6) и (7) базируются на неявном допущении, что течение обладает фиксированной геометрией. Однако, для определенных типов гравитационного течения жидкость, освобождая первоначальный объем пористой среды, не возмещается, и геометрические границы интересующей нас области будут изменяться таким образом, что получится непрерывное уменьшение объема. Этот тип проблемы непосредственно входит в сферу изучения флуктуации уровня грунтовых вод, что представляет большой практический интерес в вопросах залегания вод, ирригации и т. д. К несчастью, он осложнен такими аналитическими трудностями, что получить удовлетворительные решения даже для более простых случаев не представляется возможным. Приложение теории Дюпюи—Форхгеймера, которая обычно применялась для решения таких задач и которая приведена в гл. VI, п. 17, включает в себя столько находящихся под вопросом допущений, что может быть оправдано с трудом воспроизведение анализов, базирующихся на этой теории, хотя ничего лучшего до сих пор еще не было предложено. Поэтому мы решили опустить в настоящей работе любой вид рассмотрения флуктуаций уровня грунтовых вод с надеждой, что это опущение будет стимулировать последующих исследователей к работе над этой важной проблемой. В конечном итоге можно заметить, что аналитические основы, уравнения (4), (6) и (7), решений специфических проблем течения, которые даются в последующих главах, были выведены на допущении строгой справедливости обобщенного закона Дарси, уравнение (5), гл. III, п. 3, или ламинарности рассматриваемого течения. Область применимости этого закона покрывает, как это было указано в гл. И, п. 2, почти все практически интересные проблемы. Фактически мы можем ограничить рамки настоящей работы теми проблемами течения, которые подчиняются закону Дарси.  [c.119]

Приближенная потенциальная теория расхода при гравитационном течении. Было показано, что вследствие сомнительного характера допущений, лежащих в основе теории Дюпюи-Форхгеймера, успех ее, приведший к установлению расхода при линейном и радиальном гравитационных течениях [уравнения (8) и (9), гл. VI, п. 17], которые дают исключительно близкие приближения к значениям расходов, получаемым с помощью точного аналитического решения или прямыми экспериментами, следует рассматривать как в значительной степени случайный. Было показано на основании общих рассуждений и специальных расчетов (гл. VI, п. 5), что эти допущения являются ложными. Чтобы разрешить это противоречивое положение, при котором формулы расхода принимаются в таком неблагоприятном освещении, мы дадим краткую теорию, которая также приводит к указанным формулам, но является свободной от допущений Дюпюи. Она включает только те приближения, при которых можно заранее ожидать, что они дадут небольшие ошибки в конечных расчетах величины расхода.  [c.312]


С другой стороны, приближения уравнения (5) к правильной величине распределения давления у основания системы могут считаться в действительности достаточно близкими, чтобы показать отсутствие случайности в применении более точной формулы для величины расхода (уравнение 7), тогда как в теории Дюпюи-Форхгеймера случайность имеет место без всякого сомнения. На основании наблюдения, что применение указанной приближенной теории при выводе уравнений (3) и (7) для величины расхода при линейном и радиальном гравитационных течениях является по существу тождественным обобщенной теореме,, выведенной в гл. IV, п. 5 для расхода при плоском радиальном течении с произвольно выбранным распределением давления на круговых контурах, можно предложить более простой и все же удовлетворительный с физической стороны метод для вывода уравнений (3) и (7).  [c.316]

К приближенному методу математической обработки задач гравитационного течения, который применялся заинтересованными в этой проблеме лицами в течение многих лет и даже в настоящее время, относится так называемая теория Дюпюи-Форхгеймера. Эта теория, созданная в 1863 г. Дюпюи и позже разработанная Форхгеймером, базируется в основном на следующих допущениях  [c.327]

Как уже было замечено, приведенная формула расхода при простом радиальном гравитационном течении была продиктована раньше теорией Дюпюи-Форхгеймера. Однако сложное течение, повидимому, не попадает в рамки этой теории, пока не будет принята суперпозиция указанных выше негравитационного и гравитационного течений. Кроме того, было показано, что успех этой теории даже для простого случая строго гравитационного течения имеет несколько большее значение, чем обыкновенная случайность. К счастью, оба случая простого и сложного течений можно решить различным приближенным методом, который не только приводит к формулам расхода, установленным эмпирическим путем, но, повидимому, является с физической стороны вполне обоснованным. Эта теория базируется на простом наблюдении, что вследствие относительно высоких потенциалов вдоль поверхности стока при гравитационном течении, например, в плотине с вертикальными фасами под точкой, где заканчивается свободная поверхность, будет проходить очень малое количество жидкости через верхний участок поверхности стока даже в том случае, когда свободная поверхность не будет падать ниже уровня жидкости со стороны поглощения. Так, с физической стороны можно ожидать, если продолжить линейное изменение потенциала вдоль, поверхности стока до уровня столба жидкости на поглощении и если не допустить падения свободной поверхности раньше, чем будет вырезан верхний контур, на соответствующей электрической модели, имитирующей свободную поверхность, то результирующая величина расхода будет немного выше соответствующего значения при физическом гравитационном течении. Тогда эту гипотетическую приближенную систему можно подвергнуть соверщенно точной математической обработке, и полученные расходы будут полностью соответствовать тем величинам, которые дает теория Дюпюи-Форхгеймера. Можно получить также аналогичные результаты, прикладывая этот метод к задаче радиального гравитационного течения (гл. VI, п. 20).  [c.329]

Вполне понятно, что полученный аналитический метод совершенно пренебрегает существованием свободной поверхности, и в этом отношении он не имеет никаких преимуществ по сравнению с теорией Дюпюи-Форхгеймера. Тем не менее, оставляя в стороне допущения, заключенные в этом методе, которые, повидимому, являются вполне резонными с точки зрения подсчета величины расхода, полученный метод вполне удовлетворяет и с физической стороны, так как он дает близкое приближение к истинному значению распределения давления вдоль основания обоих—линейного и радиального — гравитационных течений, а также распределение скорости вдоль поверхности поглощения плотин с вертикальными фасами, которое было подсчитано точным путем. Приближенная теория хорошо воспроизводит распределение скорости вдоль поверхности стока указанной плотины под верхней кромкой уровня жидкости на стоке, которая нарушается только непосредственно под и над оконечностью свободной поверхности. Поэтому с точки зрения предложенной теории не является такой уже удивительной точность величин расхода, которую дает эта теория. Наконец, можно заметить, что приближенную теорию можно приложить более упрощенным путем—заменой в итоге действительного изменения потенциала вдоль поверхности стока суммарной высотой фе), которая до высоты имеет постоянный потенциал, эквивалентный напору жидкости а начиная от этой точки постоянное давление с его средним значением, эквивалентным напору жидкости (/гг + Лад)/2Л(>. Если затем решать задачи течения как негравитационные с полной разностью напора жидкости  [c.330]


Это несоответствие становится еще более отчетливым, когда сравнивается действительное распределение скорости вдоль основания линейных систем со значениями ее, соответствующими уравнению (17) и обозначенными кривыми ujk, которые допускают, что это уравнение воспроизводит непосредственное распределение напора жидкости в основании сооружения или, как это дается теорией Дюпюи-Форхгеймера, свободную поверхность, уклон которой пропорционален горизонтальной скорости. Эта несоразмерность весьма заметна на фиг. 103 и 104, где Вместе с тем отношение ujk к точной величине скорости становится бесконечно большим, так как поверхность стока приближается к основанию сооружения для hu, — О по мере того, как последнее становится логарифмически бесконечным lijk принимает бесконечное значение, как jVx для X—>0, где х—расстояние от точки А (фиг. 98). Несмотря на ошибочные стороны остальных характерных особенностей теории Дюпюи-Форхгеймера, стремящейся воспроизвести даже приблизительно внутренний режим линейного гравитационного течения, остается важным обстоятельством тот факт, что результирующий расход дается простой формулой (16) с достаточной для практических целей точностью, как это было первоначально выведено на основе теории Дюпюи-Форхгеймера. Эта парадоксальная ситуация по отношению к уравнению (16) будет освещена в гл. VI, п. 20, где будет показано, что (16) может быть получено из физически обоснованной приближенной теории. Последняя в то же самое время дает приближение к величине точного распределения давления. Именно та теория, которая будет приведена ниже, определяет собой физическое значение уравнения (16), но не теория Дюпюи-Форхгеймера, на основании которой был получен вывод уравнения (16) и который следует рассматривать только как совпадение.  [c.265]

Эксперименты на песчаных моделях с трехразмерными гравитационными течениями. Теперь становится ясным, что в свете рассмотрения, проведенного в гл. VI, п. 17, уравнения (5) и (9) гл. VI, п. 17, базирующиеся на теории Дюпюи-Форхгеймера, дающие форму свободной поверхности и величину расхода при гравитационном радиальном течении, едва ли могут считаться в какой-либо степени справедливыми без прямого эмпирического или точного аналитического подтверждения. Однако эти уравнения были поставлены под сомнение только в 1927 г., когда Козени опубликовал свою первую попытку решить проблему течения прямыми методами потенциальной теории . Так, начав с уравнения Лапласа [(2), гл. VI, п. 1], он сделал попытку синтезировать решение, удовлетворяющее граничным условиям гравитационного течения с помощью элементарных решений того типа, который был применен нами для исследования проблемы несовершенных скважин [уравнение (7), гл. V, п. 3]. К сожалению, точные граничные условия не были приложены им к решению этой задачи. Так, расход через систему был принят соответствующим линии тока, входящей в колодец на уровне жидкости в последнем. Однако в колодце, как уже было отмечено, будет иметь место определенный разрыв непрерывности, так что свободная поверхность системы будет входить в колодец над уровнем жидкости в последнем, давая толчок к образованию поверхности фильтрации. Тогда решение будет состоять только из постоянных членов и ряда функций Ганкеля, и радиальные скорости на значительных расстояниях от колодца станут экспоненциально исчезающе малыми. Однако с физической стороны ясно, что в точках, удаленных от поверхности колодца, радиальные скорости должны асимптотически приближаться к соответствующим значениям в строго двухразмерном радиальном течении. Поэтому потенциальная функция в таких точках асимптотически приближается к логарифмическому изменению или содержит, очевидно, логарифмический член, как это имеет место, например, в уравнении (5), гл. VII, п. 20 (vide infra). Наконец, потенциальная функция Козени не обладает характеристикой, требуемой каждым точным решением проблемы гравитационного течения, а именно, чтобы наивысшая линия тока была линией тока свободной поверхности с потенциалом, пропорцио-  [c.302]

Наконец, геометрическая форма свободной поверхности, которая предусматривается теорией Дюпюи-Форхгеймера, дает очень плохое приближение к истинному ее значению (фиг. 103). Это несоответствие является следствием полного пренебрежения этой теорией поверхности фильтрации на поверхности стока. В свете этих трудностей становится ясным, что успех теории Дюпюи-Форхгеймера, располагающей формулами, которые даются ею для определения величины расхода в практических целях и которые воспроизводят истинные значения величины расхода при линейном и радиальном гравитационных течениях, следует считать совершенной случайностью. Однако совершенно иной комплркс допущений, как это будет показано ниже, также приводит к идентичным формулам расхода. Эти допущения с физической стороны, повидимому, особенно соответствуют целям подсчета величины расхода при гравитационном течении. Несмотря на фундаментальное значение задачи радиального гравитационного течения в скважину, до 1927 г. не было предложено ничего нового, кроме применения упомянутой теории Дюпюи-Форхгеймера. Тогда же эта теория была впервые поставлена под сомнение и было предпринято решение рассматриваемой проблемы непосредственными методами теории потенциала. С точки зрения получения удовлетворительного математического решения, обладающего точностью, эти теоретические изыскания не имели успеха, но они послужили толчком к развитию экспериментального изучения проблемы. Наиболее поздняя из этих работ (гл. VI, п. 18), проделанная с песчаными моделями действительного течения, привела к следующему выводу свободная поверхность не следует теории Дюпюи-Форхгеймера. В частности, свободная поверхность заканчивалась совсем не на уровне стока жидкости, как это принимала последняя теория, выше а иа высоте порядка половины разности суммарного напора. Однако давление или распределение напора жидкости у основания системы можно выразить формулой, по виду идентичной с той, что дается теорией Дюпюи-Форхгеймера для геометрической формы свободной поверхности, а именно  [c.328]



Смотреть главы в:

Течение однородных жидкостей в пористой среде  -> Теория гравитационного течения Дюпюи-Форхгеймера



ПОИСК



Дюпюи для

Теория течения

Форхгеймера



© 2025 Mash-xxl.info Реклама на сайте