Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейные уравнения. Принцип подчинения

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. ПРИНЦИП ПОДЧИНЕНИЯ  [c.224]

Нелинейные уравнения. Принцип подчинения 225  [c.225]

Нелинейные уравнения. Принцип подчинения 227  [c.227]

Как установлено, для решения широкого класса стохастических нелинейных дифференциальных уравнений в частных производных существует метод, позволяющий найти функцию q it) =Д<7](0) при одном и том же t. В этом случае переменная 2 подчинена переменной q (принцип подчинения). Это позволяет существенно упростить сложную задачу.  [c.19]


Как установлено [7] для широкого класса стохастических нелинейных дифференциальных уравнений с частными производными су- шествует метод, позволяющий найти функцию q2(t)=f(qi(t)) при одном и том же t. В этом случае переменная q2 подчинена переменной qi (принцип подчинения), что позволяет существенно упростить сложную задачу.  [c.64]

Здесь и Яа — собственные значения уравнения (1.14.6), N1 — нелинейные функции от Еа. начинающиеся с квадратичных (или билинейных) членов по Е1, Еа- Вспомним теперь, что мы находимся близко к значению управляющего параметра а, при котором система теряет устойчивость в линейном приближении, т. е. Ке Я ) изменяет знак. Но это означает, X что Я1 < Яа , поэтому применим принцип подчинения. Следовательно, мы можем выразить через ( 2 / ( 1)) и свести задачу к решению одного уравнения вида  [c.64]

В гл. 4 заложена основа для стохастических методов, используемых главным образом в гл. 10. В гл. 5 и 6 рассмотрены связанные нелинейные осцилляторы и квазипериодическое движение. Обе главы (5 и 6) содержат подготовительный материал к гл. 8 (в особенности, к разделам 8.8—И). В гл. 6 излагается важная теорема Мозера. Чтобы не перегружать основной текст, ее доказательство (принадлежащее Мозеру) вынесено в приложение. В гл. 7 подводится итог нашего продвижения по основному направлению, начатого в гл. 2 и 3, и рассматривается принцип подчинения (для нелинейных дифференциальных уравнений с флуктуирующими силами и без них). В этой главе излагаются также новые результаты,.  [c.89]

Глава 7 Нелинейные уравнения. Принцип подчинения , пожалуй, наиболее существенна для понимания возможности a юop-ганизации в различных системах (на принятом в книге уровне описания). Принцип подчинения, который иллюстрируется на многих примерах, описываемых как динамическими, так и стохастическими уравнениями, позволяет выделить при образовании (по мере изменения бифуркационного — управляющего — параметра) новых диссипативных структур величины, которые играют роль параметров порядка. Изложение начинается с очень простых примеров и завершается исследованием дискретных отображений со случайными источниками и стохастических дифференциальных уравнений. При этом переход от дискретного времени к непрерывному в стохастических уравнениях не является тривиальным. Надо про-  [c.8]

Основная цель этой книги состоит в изучении резких макроскопических изменений систем. Как было показано во введении, такие изменения могут наступить, когда система теряет устойчивость по линейному приближению, В точке, где происходит потеря устойчивости, становится возможным исключить очень большое число степеней свободы, поэтому макроскопическое поведение системы зависит лишь от весьма небольшого числа степеней свободы. В этой главе мы хотим показать в явном виде, каким образом вблизи точки, в которой происходит потеря устойчивости по линейному приближению, можно исключить большинство переменных. Такие точки потери устойчивости называются критическими. Предлагаемый вниманию читателя метод прост и охватывает большинство практически важных случаев. Основные идеи метода мы покажем на простом примере (разд. 7.1), после чего изложим наш метод для нелинейных уравнений в общем случае (разд. 7.2—7.5) Основные предположения и допущения перечислены в разд. 7.2, окончательные результаты приведены в разд. 7.4 (до формулы (7.4.5) включительно). Разд. 7.3 и конец разд. 7.4 посвящены вопросам, носящим более технический характер. Остальную часть этой главы мы отводим обобщению принципа подчинения на случай дискретных отображений с шумом и на стохастические дифференциальные уравнения типа Ито (и Стратоновича) (разд. 7.6—7.9).  [c.224]


После подробного изложения математических методов, иногда сопряженных с необходимостью производить довольно громоздкие вычисления, уместно перевести дух и кратко сформулировать наиболее существенные выводы, к которым приводят отдельные этапы алгоритма. Отправным пунктом наших теоретических построений были нелинейные уравнения с флуктуирующими силами. На первом этапе мы предполагали, что эти силы пренебрежимо малы. Затем мы исследовали поведение систем, содержаших флуктуирующие силы, вблизи критических точек. Оказалось, что в достаточно малой окрестности критической точки поведение системы определяется небольшим числом параметров порядка и принцип подчинения позволяет исключить все подчиненные переменные. Включение флуктуирующих сил не нарушает процедуру исключения переменных, и мы приходим к уравнениям для параметров порядка с флуктуирующими силами. Такие уравнения для параметров порядка могут быть типа уравнений Ланжевена—Ито или Стратоновича. Эти уравнения, вообще говоря, нелинейны, и вблизи критических точек нелинейность не становится пренебрежимо малой. С другой стороны, часто бывает достаточно учесть лишь главный член нелинейности. Наиболее изящный подход к решению такого рода задач состоит в преобразовании уравнений для параметра порядка типа уравнения Ланжевена—Ито или Стратоновича в уравнение Фоккера—Планка. За последние десятилетия эта программа была реализована на различных системах. Выяснилось, что во многих случаях, когда возникают пространственные структуры, принцип детального равновесия на уровне уравнений для параметров порядка обусловлен соотношениями симметрии. В подобных случаях удается оценить распределение вероятности, с которой реализуются отдельные конфигурации при определенных значениях параметров порядка и,-. В свою очередь это позволяет вычислить вероятность образования тех или иных пространственных структур и найти устойчивые конфигурации по минимуму V (и) в  [c.348]


Смотреть страницы где упоминается термин Нелинейные уравнения. Принцип подчинения : [c.62]   
Смотреть главы в:

Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах  -> Нелинейные уравнения. Принцип подчинения

Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах  -> Нелинейные уравнения. Принцип подчинения



ПОИСК



Нелинейность уравнений

Принцип подчинения

Уравнение нелинейное



© 2025 Mash-xxl.info Реклама на сайте