Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщения случая Гесса

Обобщение случая Гесса  [c.196]

Инвариантное соотношение (2.29) определяет выделенный тор в фазовом пространстве, на котором решение может быть получено в квадратурах. Процедура интегрирования может быть выполнена при помощи результатов 1, 3 гл. 4. Это обобщение случая Гесса ранее, по-видимому, не указывалось, хотя и является достаточно естественным.  [c.197]

Обобщения случая Гесса 247  [c.247]

Обобщения случая Гесса 249  [c.249]

Обобщения случая Гесса 251  [c.251]

Замечание 4. Все обобщения случая Гесса, указанные на алгебре е(3), могут быть естественным образом перенесены на случай пучка скобок вследствие того, что уравнения для М одинаковы на всем пучке. Инвариантное соотношение Гесса при этом не зависит от параметра пучка.  [c.251]


Обобщения случая Гесса 253  [c.253]

Отметим, что линейные интегралы в общих уравнениях динамики твердого тела вокруг неподвижной точки изучались Д. Н. Горячевым в работе [62]. В ней он привел три типичные рассмотренные ниже возможности, которые, в некотором смысле, являются единственными (доказательство последнего, видимо, не является простым). В 3, 4 соответствующие редукции применены к линейным инвариантным соотношениям, систематическое введение которых в динамику принадлежит Т. Леви-Чивита, который также пытался использовать их в динамике твердого тела (наряду с небесной механикой) [ИЗ]. Однако наиболее явное и значительное развитие идей Леви-Чивита получается при рассмотрении инвариантных соотношений типа Гесса, которые, как оказывается, имеются у многих родственных задач динамики твердого тела. В этом случае также существует некоторая циклическая переменная, возможно понижение порядка и имеется аналогия со случаем Лагранжа и его обобщениями. Из нее, в частности, вытекает ряд качественных особенностей движения обобщенных случаев Гесса (например, наблюдение  [c.221]

Замечание 6. Аналог случая Гесса при движении твердого тела по абсолютно шероховатой плоскости (неголономная система) до сих пор не найден. Тем не менее обобщение задачи Лагранжа о качении осесимметричного тела по плоскости существует и проинтегрировано С. А. Чаплыгиным [122].  [c.253]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть страницы где упоминается термин Обобщения случая Гесса : [c.250]    [c.89]    [c.240]   
Смотреть главы в:

Динамика твёрдого тела  -> Обобщения случая Гесса



ПОИСК



Гессе

Обобщения

Случай Гесса



© 2025 Mash-xxl.info Реклама на сайте