Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аналог случая Гесса

Аналог случая Гесса. Если эллипсоид инерции твердого тела относительно точки закрепления несимметричен, и центры приведения всех трех полей гг,г2, тз располагаются на перпендикуляре к его круговому сечению  [c.211]

В уравнениях Кирхгофа аналог случая Гесса (см. следующий параграф) был замечен Чаплыгиным [178] (который сразу использовал неглавные оси), а из условия расщепления сепаратрис он же был получен в [98]. Для этого аналога справедливы большинство геометрических и аналитических динамических выводов, указанных для обычного случая Гесса.  [c.247]


Замечание 6. Аналог случая Гесса при движении твердого тела по абсолютно шероховатой плоскости (неголономная система) до сих пор не найден. Тем не менее обобщение задачи Лагранжа о качении осесимметричного тела по плоскости существует и проинтегрировано С. А. Чаплыгиным [122].  [c.253]

Следуя общей схеме исследования, предложенной при анализе аналогов случая Лагранжа, укажем сначала общие динамические условия, приводящие к существованию инвариантного соотношения типа Гесса, а затем проиллюстрируем их на различных механических системах [33].  [c.247]

Дальнейшие результаты, а) Стержень, нагруженный на концах ПАРАМИ. Для случая стержня, который в ненапряженном состоянии имеет форму призмы и который изгибается и закручивается парами, действующими иа концах, кинетической аналогией служит твердое тело, движущееся свободно. Эту аналогию установил Гесс 2). Если поперечное сечение имеет кинетическую симметрию, т. е. А = В, то уравнения равновесия показывают, что степе.ть кручения т и  [c.434]

Отметим, что линейные интегралы в общих уравнениях динамики твердого тела вокруг неподвижной точки изучались Д. Н. Горячевым в работе [62]. В ней он привел три типичные рассмотренные ниже возможности, которые, в некотором смысле, являются единственными (доказательство последнего, видимо, не является простым). В 3, 4 соответствующие редукции применены к линейным инвариантным соотношениям, систематическое введение которых в динамику принадлежит Т. Леви-Чивита, который также пытался использовать их в динамике твердого тела (наряду с небесной механикой) [ИЗ]. Однако наиболее явное и значительное развитие идей Леви-Чивита получается при рассмотрении инвариантных соотношений типа Гесса, которые, как оказывается, имеются у многих родственных задач динамики твердого тела. В этом случае также существует некоторая циклическая переменная, возможно понижение порядка и имеется аналогия со случаем Лагранжа и его обобщениями. Из нее, в частности, вытекает ряд качественных особенностей движения обобщенных случаев Гесса (например, наблюдение  [c.221]

Якоби также пытался дать полную геометрическую картину движения по аналогии с интерпретацией Пуансо случая Эйлера. Им было сформулировано утверждение, которое он привел без доказательства, заключающееся в том, что движение волчка Лагранжа может быть разложено на два движения типа Пуансо — прямое и обратное. Доказательство этого утверждения привел Е.Лоттнер в 1882 г., издатель посмертных трудов Якоби. Мы не обсуждаем этого результата и его усовершенствований, предложенных Дарбу, Альфаном и Гессом, вследствие их чрезмерной сложности и искусственности [120, 163]. Они также не способны дать ясное впечатление о картине движения, как и аналитические выражения.  [c.111]



Смотреть главы в:

Динамика твёрдого тела  -> Аналог случая Гесса



ПОИСК



Аналог

Аналогия

Гессе

Случай Гесса



© 2025 Mash-xxl.info Реклама на сайте