Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Марганец — азот

В таблицу включены не только хромоникелевые стали, в том числе и с дополнительным легированием, но и такие,, в которых марганец и азот частично и даже полностью заменяют никель (в последнем случае они, разумеется, не являются хромоникелевыми сталями).  [c.487]

Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы никель, марганец, медь, азот — расширяют область устойчивого состояния аустенита. При содержании этих легирующих элементов выше определенного количества сталь в интервале от комнатной температуры до перехода в жидкое состояние имеет структуры легированного аустенита. Такая сталь называется аустенитной.  [c.49]


Было предложено для конденсаторов тепловых электрических станций, охлаждаемых морской водой, применять трубки из нержавеющих сталей с пониженным содержанием никеля. Наряду с никелем для получения аустенитной структуры в этих сталях применяют марганец и азот.  [c.275]

Первая группа — никель, марганец, углерод, азот, медь в двойных диаграммах (с железом) — образует расширенную у-область (фиг. 182, а), характеризуемую сниженной точкой Ag и повышенной Л4, и увеличивает устойчивость у-железа. Кобальт, принадлежащий к первой группе, повышает обе эти точки и А .  [c.305]

В результате последующих исследований предложены нержавеющие стали аустенитного класса - заменители сталей типа 18-10, содержащие вместо никеля марганец или марганец и азот. С 1970 г. в нашей стране запатентовано более 150 марок таких сталей, изучены технологии их выплавки, последующего передела и эксплуатационные свойства в промышленности.  [c.358]

Упрочняемые фазовым наклепом аустенитные сплавы на Fe-Ni основе имеют высокое содержание Ni (от 25 до 32%). Одним из направлений дальнейшего развития метода упрочнения аустенита за счет прямого и обратного мартенситных превращений является разработка аустенитных сплавов, содержащих меньшее количество дефицитных легирующих элементов. Элементами, заменяющими никель, могут служить, в частности, хром, марганец, углерод, азот. Замена никеля хромом (при содержании 12% Сг и более) переводит аустенитную сталь в класс нержавеющих. Это обстоятельство оказалось определяющим для выбора третьего элемента при разработке составов аустенитных сталей, упрочняемых фазовым наклепом.  [c.212]

По влиянию на температуру полиморфных превращений железа, т. е. на положение критических точек Лз и Л4, легирующие элементы можно разделить на две группы. К первой группе относятся элементы, увеличивающие устойчивость аустенита, т. е. повышающие точку Л4 и понижающие точку Л3 (рис. 128, о) к этой группе относятся никель, марганец, углерод, азот, медь и некоторые другие. Вторая группа, в которую входит большинство других легирующих  [c.213]

Первая группа никель, марганец, углерод, азот, медь и др., увеличивают устойчивость аустенита и образуют двойные диаграммы с железом с расширенной -[-областью (фиг.  [c.283]

По влиянию на температуру полиморфных превращений железа, т.е. на положение критических точек Лз и Л4, легирующие элементы можно разделить на две группы. К первой группе относятся элементы, увеличивающие устойчивость аустенита, т. е. повышающие точку Л4 и понижающие точку Л3 (рис. 98,а) к этой группе относятся никель, марганец, углерод, азот, медь и некоторые другие. Вторая группа, в которую входит большинство других легирующих элементов — хром, ванадий, молибден, вольфрам, кремний, титан и др. — это элементы, увеличивающие устойчивость феррита, т.е. понижающие точку Л4 и повышающие точку Лз (рис. 98,6). Исключение составляет хром, который понижает точки Лз и Л4.  [c.217]


Углеродистая сталь промышленного производства — сложный по химическому составу сплав. Кроме основы — железа (содержание которого может колебаться в пределах 97,0— 99,5%), в ней имеется много элементов, наличие которых обусловлено технологическими особенностями производства (марганец, кремний), либо невозможность полного удаления их из металла (сера, фосфор, кислород, азот, водород), а также случайными примесями (хром, никель, медь и др.).  [c.180]

Постоянными примесями сталей считают марганец, кремний, фосфор, серу, а также газы (водород, азот, кислород), в то-или ином количестве постоянно присутствующие в технических сортах стали.  [c.183]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода полезных — кремния, марганца и др.). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор из металлического лома — хром, никель и др. в процессе раскисления — кремний и марганец.  [c.14]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Химические элементы в сталях условно обозначаются следующим образом алюминий (А1) — Ю, азот (А) — А (только в высоколегированных сталях), бор (В) — Р, ванадий (V) — Ф, вольфрам ( ) — В, кремний (51) — С, кобальт (Со) — К, марганец (Мп) — Г, медь (Си) — Д, молибден (Мо) — М, никель (N1) — Н, ниобий (N8) — Б, титан (Т1) — Т, хром (Сг) — X, цирконий (2г) — Ц.  [c.48]

Состав и количество вредных газов, пыли и испарений зависит от вида сварки, состава защитных средств (покрытий, флюсой, газов), свариваемого и электродного материалов. Количество сварочной пыли (аэрозоли) и летучих соединений при сварке составляет от 10 до 150 г на 1 кг расплавленного электродного металла. Основными составляющими являются окислы железа (до 70%), марганца, кремния, хрома, фтористые и другие соединения. Наиболее вредными являются хром, марганец и фтористые соединения. Кроме аэрозоли, воздух в рабочих помещениях при сварке загрязняется различными вредными газами окислами азота, углерода, фтористым водородом и др.  [c.156]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря на то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или водород, решающую роль в превращении железа в сталь играет именно углерод [37]. Например, для стали У7А (содержание углерода 0,63- 0,73 %) предел прочности при растяжении 650 МПа, относительное удлинение 18 %, в отожженном состоянии НВ 180 [15].  [c.66]

Установлено, что при увеличении содержания углерода прочность и твердость железа увеличиваются, то есть несмотря ка то, что в стали содержится большое количество металлических и неметаллических элементов марганец, кремний, фосфор, сера, хром, никель, медь, азот, кислород или во-  [c.240]

Для повышения температуры полиморфного превращения а-ти-тана вводят алюминий, кислород, азот и углерод для понижения температуры полиморфного превращения уЗ-титана добавляют цирконий, ниобий, ванадий, молибден, марганец, железо, хром, кобальт и др.  [c.298]

В действительности в чугуне будут присутствовать неизбежно попадающие в него при выплавке примеси. К ним относятся марганец и кремний, которые принято рассматривать как полезные примеси. К вредным примесям относятся сера и фосфор, а также попадающие из атмосферы кислород, азот и водород.  [c.27]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]


При взаимодействии с азотом на поверхности металлов и сплавов протекает активная адсорбция при этом скорость диффузии азота тем выше, чем больше сродство входящих в состав сплава элементов с азотом. Наибольшим сродством к азоту обладают титан и алюминий, значительно меньшим — хром, марганец, молибден, железо и кобальт.  [c.84]

Легирующие элементы обозначают следующими буквами Н — никель, X — хром, К — кобальт, В — вольфрам, М — молибден, Т — титан, С — кремний, Ф — ванадий, Г — марганец, Д — медь, П — фосфор, Ю — алюминий, Б — ниобий, Р — бор, Н — цирконий, А — азот, Ч — редкоземельные металлы.  [c.143]

Благоприятное влияние никеля и марганца на хладостой-кость стали объясняется тем, что эти элементы в оптимальном количестве (около 1%) увеличивают подвижность дислокаций никель — уменьшая энергию взаимодействия дислокации с атомами внедрения, марганец — задерживая азот и снижая его содержание в атмосферах Коттрелла. Повышение в составе стали марганца, никеля приводит к понижению как работы зарождения йэ, так и работы распространения Др трещины вследствие образования промежуточных игольчатых структур при охлаждении аустенита.  [c.41]

Гелий Гафний Ртуть Гольмий Иод Индий Иридий Калий Криптон Лантан Литий Лоуренсий Лютеций Менделевий Магний Марганец Молибден Азот Натрий Ниобий Неодим Неон Никель Нобелий Нептуний Кислород Осмий Фосфор Про такти-, ний Свинец Палладий Прометий Полоний Празеодим Платина Плутоний Радий  [c.12]

Легирующие элементы, -расширяющие область аустенита. называются элементами-аустенитизаторамн. К ним, помимо углерода, относятся марганец, никель, азот, медь.  [c.469]

Ускоренное охлаждение шва, легирование металла элементами (марганец, молибден, азот), повышающими энергию активации процессов диффузии и снижающими энергию дефектов упаковки (частичных или разорванных дислокаций), подавляет развитие высокотемпературной дислокационной ползучести и предотвращает образование ГТ в ТИХз.  [c.55]

Принцип обозначения химического состава наплавленного металла прежний — углерод дан в сотых долях процента, среднее содержашю основных химических элементов указано с точностью до 1% после следующих буквенных символов А — азот, Б - ниобий, В — вольфрам, Г — марганец, К — кобальт, М — молибден, II --- иике.ль, Р — бор, С —- кремний, Т — титан, Ф — ванадий, X — хром. Показатели твердости наплавленного металла в зависимости от типа электрода даны либо в исходном поело наплавки состоянии, либо после те])мообработки.  [c.113]

В марках нержавеющих высоколегированных сталей по ГОСТ 5632—72 химические элементы обозначаются следующими буквами А — азот, В — вольфрам, Д — медь, М — молибден, Р—бор, Т — титан, Ю — алюминий, X—хром, Б — ннобнй, Г — марганец, Е — селен, Н — никель, С — кремний, Ф — ванадий, К — кобальт, Ц — цирконий. Цифры, стоящие в наименовании марки после букв, указывают, так же как и в наименовании марок конструкционных сталей, процентное содержание легирующего элемента в целых едишщах. Содержание элемента, присутствующего в стали в малых количествах, цифрами не обозначается. Цифра перед буквенным обозначением указывает на среднее или при отсутствии нижнего предела на максимальное содержание углерода в стали в сотых долях процента. Наименование марки литейной стали заканчивается буквой Л.  [c.49]

Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способстаует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт.  [c.14]

Марганец, технеций и рений при комнатной температуре покрываются оксидной пленкой, защищающей от дальнейшего окисления при повышенной реагируют с кислородом, галогенами, серой, а марганец и с азотом оксиды технеция летучи. Химическая активность уменьшается с увеличением азомной массы.  [c.140]

Фиг. 8. Типы двойных диаграим состояниа сплавов на основе титана (Глазунов, Молчанова) б — система титан—ванадий, полная растворимость в р-титаие, частичная — в а-титане. тане, образование ввтектоида с ч-титаном, г — система титан—марганец, эвтектика с р-тита таи—кислород, перитектика, аналог — азот е -система титан—алюминий, перитектика с р-ти Фиг. 8. Типы двойных диаграим состояниа сплавов на основе титана (Глазунов, Молчанова) б — система <a href="/info/535209">титан—ванадий</a>, полная растворимость в р-титаие, частичная — в а-титане. тане, образование ввтектоида с ч-титаном, г — система титан—марганец, эвтектика с р-тита таи—кислород, перитектика, аналог — азот е -система титан—алюминий, перитектика с р-ти
При отрицательном знаке обменного интеграла энергетически выгодным становится антипараллельное расположение спинов у соседних атомов решетки. Поэтому Мп и Сг, у которых J < О, не обладают ферромагнитными свойствами. Еслп, однако, постоянную решетки Мп слегка увеличить так, чтобы отношение aid оказалось порядка 1,5, то можно ожидать, что марганец станет ферромагнетиком. Эксперимент подтверждает это. Так, введение в Мп небольшого количества азота вызывает увеличение параметра решетки и приводит к появлению ферромагнетизма. Ферромагнитными являются также сплавы Мп — Си — А1 (сплавы Гейслера) и соединения MnSb, MnBi и др., в которых атомы марганца находятся на расстояниях, больших, чем в решетке кристалла чистого маоганца.  [c.295]

К другим элементам, обычно входящим в состав аустенитных нержавеющих сталей, относятся Мп (1—2 %), С (0,03—0,25%), N (0,02—0,30%) и 51 (1—3%), Р (часто присутствует как загрязняющая примесь). Влияние марганца на стойкость аустенитных сталей против КР может быть различным. Наименее сомнительные эксперименты [66] не показали никакого эффекта. [81], но за пределами обычного диапазона 1—2% наблюдались случаи как положительного, так и отрицательного влияния марганца [66, 68, 69, 82]. Есть данные о том, что при испытаниях во влажных условиях концентрации марганца >3% снижают стойкость против КР [83]. Эксперименты в газообразном водороде при еще более высоком содержании марганца в стали показали явный отрицательный эффект [39, 84]. Добавки марганца, часто предназначенные для замещения никеля, вводятся с целью повышения растворимости азота и, следовательно, потенциальной упрочняемости сплава. Поэтому наблюдаемые эффекты могут быть отчасти связаны с усилением планарности скольжения, вызываемым азотом, как будет показано ниже. Кроме того, марганец повышает ЭДУ в меньшей степени, чем никель. Очевидно, необходимы дополнительные исследования влияния марганца на стойкость аустенитных сталей против как КР, так и водородного охрупчивания.  [c.70]


В табл. 1.8 приведены марки стали и сплавов, рекомендуемых ЦКБ А для энергетической арматуры АЭС. В табл. 1.9 и 1.10 приведены марки материалов, которые применяют зарубежные фирмы для изготовления узлов и деталей арматуры для АЭС, а в табл. 1.11 — химический состав материалов этих марок Механические характеристики легированных сталей, применяемых в арматуро строении, приведены в табл. 1.12—1.14. В обозначениях марок стали буквы обо значают А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь Е — селен, К — кобальт, М — молибден, Н — никель, Р — бор, С — кремний  [c.27]

Титан существует в двух аллотропических модификациях —а-титан, имею щий гексагональную, плотно упакованную решетку с периодами а = 2,9503 0,0004А и с = 4,8631 0,000А, с а 1,5873 0,0004 устойчив при темпе ратурах ниже точки полиморфного превращения 882 С, и Р-титан с кубической объемно-центрированной решеткой, период которой, определенный условно для 20° С методом экстраполяции, равен 3,283 0,003А, а при 900 — 5 — 3,3132.Л устойчив при температурах выше 882 С. Однако можно получить Р-решетку, устойчивую и при более низких температурах путем легирования титана другими металлами, так называемыми Р-стабилизаторами, наиболее употребительными из которых являются молибден, ванадий, марганец, хром, железо. Можно расширить температурный интервал существования и а-решетки путем легирования титана алюминием, кислородом и азотом, которые повышают температуру полиморфного превращения и называются а-стабилизаторами.  [c.172]

Медь и железб, как установили Мюллер и Барк, имеют наибольшую активность из всех изученных катализаторов. В присутствии медной и железной спиралей в опытах авторов окись азота разлагалась уже при температуре порядка 300 " С. Такие катализаторы, как цинк, марганец, магний, заметно разлагали N0 при температуре / = 500—600 °С. Наименее активными оказались хром, латунь и алюминий. Эти катализаторы практически не ускоряют реакцию в области температур <600°С. При = 300°С, как установлено в работе [268], в результате инактивации катализатора, вызванной адсорбцией кислорода, окись азота разлагалась на железной спирали, восстановленной в атмосфере метилового спирта или водорода, только на 45,7%. При этой температуре N0 на медной спирали разлагалась на 63%, однако уже при / = 400 °С в случае восстановленного железа разложение окиси азота было полным. Для меди разложение N0 на 1007о имело место при температуре / = 500°С.  [c.105]


Смотреть страницы где упоминается термин Марганец — азот : [c.56]    [c.358]    [c.26]    [c.287]    [c.30]    [c.363]    [c.486]    [c.25]    [c.228]    [c.66]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Марганец — азот



ПОИСК



Азот

Диаграмма состояний алюминий азот железо—марганец

Диаграмма состояний железо—титан марганец—азот

Марганец



© 2025 Mash-xxl.info Реклама на сайте