Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые расчеты при термической обработке

ТЕПЛОВЫЕ РАСЧЕТЫ ПРИ ТЕРМИЧЕСКОЙ ОБРАБОТКЕ  [c.57]

Определение испарительной способности продуктов и материалов. Потребность в уточнении расчетов тепловых процессов особенно остро ощущается при термической (тепловой и холодильной) обработке мясных продуктов [63, 64 и др.], поэтому методические вопросы отрабатывались на образцах из говяжьего мяса. В связи с лабильностью этого продукта использовалась вторая методика из двух изложенных выше.  [c.132]

В практике выбора режима термической обработки различных металлических деталей при лабораторных исследованиях, изучении тепловых свойств материалов, конструировании различных терморегулирующих устройств и т. д. приходится принимать во внимание характер кинетических кривых нагрева и охлаждения. Указанному вопросу посвящен ряд работ [1—4], результатами которых можно воспользоваться при расчетах кривых нагрева (охлаждения) реальных печей. В частности, используя результаты этих исследований, нами [5, 6] предпринята попытка разработать метод нагрева и охлаждения по наперед заданному закону. При расчетах использовались основные положения теории регулярного режима. Однако изучение кинетики нагрева лабораторных печей с электрическим обогревом [5] показало, что  [c.310]


Возможность и способ осуществления требуемых по данной технологии термической обработки режимов нагрева устанавливают, в частности, проводя тепловые расчеты. Проведение расчетов необходимо также при выборе печного оборудования, в ходе разработки технических требований на проектирование печей и печных агрегатов. Тепловые расчеты выполняются технологом по термической обработке стали, например, при переходе на другую номенклатуру обрабатываемых в имеющихся печах изделий, при текущей модернизации и совершенствовании печного оборудования, для уточнения паспортных характеристик печей, при снабжении их системами управления и т. д.  [c.81]

При сварке высокопрочных сталей и цветных сплавов, подвергнутых термической обработке, нередко пониженной прочностью обладают не сварные швы, а зоны термического влияния, в которых происходит тепловой отпуск. Расчет прочности сварных швов  [c.272]

С расчетами нагревания и охлаждения тел часто приходится иметь дело в различных отраслях техники. Эта задача встречается, например, при нагревании или остывании стен помещения, обусловленном неравномерностью работы систем отопления, при тепловой обработке различного рода материалов и изделий в нагревательных печах. В этом случае основным рабочим режимом является нестационарный, при котором определяют время, необходимое для прогрева материала до требуемой температуры, или температуру, до которой изделие нагревается в течение известного промежутка времени. В промышленности строительных материалов нестационарный теплообмен фактически сопутствует всем процессам, связанным с нагреванием и охлаждением материалов и изделий, а также процессам, происходящим при прогревании ограждений во время пуска тепловых установок, при аккумулировании теплоты обмуровками периодических печей, подачи вагонеток туннельных печей и т. п. В туннельных печах, предназначенных для термической обработки массовой продукции (кирпич, черепица и т. д.), обжигаемые изделия устанавливают на вагонетки, которые, перемещаясь вдоль печи, соприкасаются с газами различной температуры.  [c.294]

При тепловом контакте поверхностей с чистотой обработки выше 5-го класса при первоначальном нагружении, когда имеет место упруго-пластическая деформация микронеровностей, для приближенного расчета термического сопротивления фактического контакта можно применять выражение (3-9) в следующем виде  [c.80]

Ударная вязкость, характеризуя работу, необходимую для разрушения при внезапных приложениях нагрузки в условиях объемного напряженного состояния, не используется в расчетах на прочность. Ударная вязкость является интегральной характеристикой механических свойств, зависящей одновременно и от прочности, и от пластичности. Между характеристиками прочности и ударной вязкости не существует определенной связи. Однако наблюдается некоторая согласованность между КС н относительным сужением ф. Низкие значения if всегда соответствуют низкой ударной вязкости, но высокие значения г)) не всегда гарантируют высокую ударную вязкость. Важной целью определения ударной вязкости является оценка качества термической обработки и установления чувствительности стали к охрупчиванию в процессе обработки и эксплуатации (явления старения, тепловой хрупкости и т. и.). Ударная визкость является сдаточной характеристикой только для элементов конструкций котлов, сосудов и трубопроводов с толщиной стенки 12 мм и более. В особых случаях испытания на ударную вязкость необходимы для металла труб с толщиной 6 мм и более, что указывается в нормативно-технической документации. При этом применяются образцы типа 3 (см. табл. 2.18).  [c.38]


Расчет полного термического сонротив-лення контакта. Рассмотрим тепловое течение в составном теле. В увеличенном масштабе контакт двух шероховатых поверхностей условно можно представить рис. 147. Тепловой поток, идущий от тела 1 к телу 2, при подходе к поверхности соприкосновения раздваивается. Одна часть теплоты проходит через места фактического контакта, а другая — через среду, заполняющую пространство между выступами шероховатости (лучистым теплообменом в зазоре пренебрегаем). Фактическая площадь контакта зависит от шероховатости поверхностей (чистоты обработки) и степени пх сжатия. Для шероховатого тела без приложения нагрузки фактическая площадь касания стремится к нулю, тогда практически весь тепловой поток может перейти от тела 1 к телу 2 только вследствие теплопроводности среды в зазоре. Оценим ориентировочно термическое  [c.231]

Расчет коэффициента Ос для ПМО заготовки из стали 112Х18Н9Т показывает, что коэффициент ас сравнительно мало зависит от сосредоточенности теплового потока ко, но связан с элементами режима резания. При массивных черновых стружках и достаточно высоких скоростях резания коэффициент Ос может достигать значений 0,7...0,8, т. е. около 70...80% внесенной в заготовку теплоты уходит со стружкой. При получистовой обработке величины ос значительно меньше, и, следовательно, основная часть теплоты, внесенной плазмотроном, остается в заготовке. Поскольку увеличение нагрева материала заготовки повышает вероятность изменения его структуры и уровень термических напряжений, снижение Ос может привести к трещинообразованию и возникновению дефектного подповерхностного слоя. Следовательно, при наладке и внедрении в производство процесса получистовой ПМО необходим контроль состояния поверхностного слоя готовой детали, а в случае появления микротрещин и прижогов следует решать вопрос о тепловой разгрузке заготовки в процессе обработки путем изменения параметров нагрева или режима резания.  [c.61]

Для расчета второй части ошибки, как правило, требуется проведение дополнительных исследований с целью определения оптимальных условий проведения эксперимента. Так, подавляющее большинство методов основано на решении одномерной задачи, в то время как на практике, естественно, используются образцы конечных размеров. В этом случае необходим ппедварительный анализ соответствующих двумерных задач, в результате которого можно найти такие соотношения между линейными размерами образца, при которых условия одномерности теплового потока удовлетворялись бы с требуемой точностью. Необходимо принять и ряд других мер для получения достоверных данных. В частности, при подготовке образцов для теплофизического эксперимента необходима тщательная обработка поверхностей для соблюдения граничных условий четвертого рода, так как термические сопротивления являются серьезным источником погрешности. К сожалению, не существует каких-либо общих критериев, позволяющих определить  [c.128]

В практике работы машин и аппаратов довольно часто встречаются соединения, подвергающиеся нестационарному тепловому воздействию. Для исследования особенностей контакта при нестационарном тепловом режиме применялась установка по скоростному определению термического сопротивления в зоне контакта (см. рис. 4-11). Показания самопишущего потенциометра в различные промежутки времени (4 интервала) нагрева образцов из материалов Д1 — сталь 45 и сталь 45 — сталь 30 приводятся на рис. 5 18 и 5-19. Здесь же приводится обработка данных в относительных координатах йТ1(1г=1 ) — относительная координата) с целью определения величины Ь — изменения скорости роста температуры в контактной зоне и величины а — скорости подъема температуры на границах образцов. Для нестационарного режима расчет термического сопротивления к.нст ведется по выражению (4-5) и определяется изменение Яц- ст в зависимости от времени т агрева образцов (рис. 5-18,в и 5-19,б). Характер кривой Як.пст = т ) может быть объяснен, исходя из физической сущности теплообмена в зоне контакта. Действительно, как видно из рис. 5-19, в первом интервале нагрева (/) при Т1 = 80 мин средняя температура контактной зоны лежит в пределах 7 к = 311°К, теплопроводность воздуха Яс = 26,5-10 3 вт/(м град), эквивалентная теплопроводность контактирующих металлов Лм = 47,8 втЦм- град), модуль нормальной упругости = 20,05 1 О н/м , в то время как в четвертом интервале (IV) при Т4=138 мин, когда температура контакта 7 к = 333°К, соответственно Я,с = 28,6 10-3 втЦм-град), Ям = 48,3 втЦм-град) и Е = = 20,1 10 н1м . Таким образом, имеет место увеличе-132  [c.132]



Смотреть главы в:

Справочник термиста Издание 4  -> Тепловые расчеты при термической обработке



ПОИСК



Обработка тепловая



© 2025 Mash-xxl.info Реклама на сайте