Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

К теории дифференциальных соответствий в механике сплошной среды

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]


Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

Когда плотность газа становится достаточно низкой, так что средняя длина свободного пробега больше ие является- пренебрежимо малой по сравнению с характерным размером течения, результаты, полученные методами механики сплошной среды, требуют поправок, которые становятся все более и более значительными по мере увеличения степени разреженности. Если разреженность достаточно велика, то вместо механики сплошной среды необходимо пользоваться кинетической теорией газов, а вместо уравнений Навье — Стокса — уравнением Больцмана. Последнее представляет собой весьма сложное нелинейное интегро-дифференциальное уравнение, решение которого для практических задач осуш ествимо, по-видимому, только при помощи соответствующих приближенных математических методов.  [c.8]


Смотреть страницы где упоминается термин К теории дифференциальных соответствий в механике сплошной среды : [c.336]    [c.628]    [c.7]    [c.68]    [c.24]   
Смотреть главы в:

Механика пластических сред Том2 Общие вопросы  -> К теории дифференциальных соответствий в механике сплошной среды



ПОИСК



Механика сплошной

Механика сплошных сред

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте