Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение кинематических диаграмм методом графического дифференцирования и интегрирования

ПОСТРОЕНИЕ КИНЕМАТИЧЕСКИХ ДИАГРАММ МЕТОДОМ ГРАФИЧЕСКОГО ДИФФЕРЕНЦИРОВАНИЯ И ИНТЕГРИРОВАНИЯ  [c.164]

Рассмотренные методы графического дифференцирования и интегрирования при всей их простоте и наглядности не рашают вопросов кинематики точки полностью. Диаграммы дают лишь скалярные кинематические величины, направления же векторов этих величин неизвестны. Кинематические параметры —скорости и ускорения — можно определить при помощи графического дифференцирования только после того, как построены траектория и график перемещений. Графический же метод, основанный на построении планов скоростей и ускорений, в достаточной степени разработан, точен и удобен в практическом применении при исследовании движения механизмов. Кроме того, он дает возможность непосредственно определять скорости и ускорения без построения диаграммы пути и без графического дифференцирования.  [c.70]


Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]


Смотреть главы в:

Техническая механика Издание 3  -> Построение кинематических диаграмм методом графического дифференцирования и интегрирования



ПОИСК



Графические построения

Графический

Графическое дифференцирование

Графическое интегрирование

Графическое интегрирование и дифференцирование

Диаграмма i с построение

Диаграммы кинематические

Диаграммы кинематические Построение

Дифференцирование

Дифференцирование графическо

Интегрирование

Метод графический

Метод графического дифференцирования

Метод графического интегрирования

Метод дифференцирования

Метод кинематических диаграмм

Методы интегрирования



© 2025 Mash-xxl.info Реклама на сайте