Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СВОЙСТВА ПОЛИМЕРНЫХ ДИЭЛЕКТРИКОВ

Свойства полимерных диэлектриков  [c.8]

Изменение свойств полимерных диэлектриков при облучении дозой электронов 5,8 10 электрон/см при плотности потока 1 /О электрон/(см с) и энергии 1,0 МэВ  [c.465]

Диэлектрические свойства. Полимерные пленки являются хорошими диэлектриками. Их поведение в электрическом поле определяется такими характеристиками, как диэлектрическая проницаемость е, тангенс угла диэлектрических потерь удельное объемное и поверхностное  [c.121]


Металлизированные в вакууме полимерные пленки и бумагу широко применяют при изготовлении конденсаторов, в которых металлическое покрытие служит обкладками, а основа — диэлектриком. Конденсаторная бумага имеет свойства полярного диэлектрика высокую диэлектрическую проницаемость и большой угол диэлектрических потерь. Вследствие большой пористости бумага гигроскопична, и во влажных условиях ее электрические свойства ухудшаются. Для удаления влаги бумагу длительно сушат в вакууме с последующим наполнением пор жидким диэлектриком. Перед металлизацией на поверхность бумаги наносят тонкий (порядка 1 мкм) слой лака, который препятствует газовыделению и сглаживает грубый рельеф поверхности древесных волокон.  [c.321]

Свойства некоторых полимерных диэлектриков представлены в табл. 16.7.  [c.703]

Пластмассы — композиционные материалы, основой которых являются полимеры, определяющие главные свойства и выполняющие роль связующего, соединяющего все компоненты материала в монолит. Остальные компоненты — наполнители, пластификаторы, стабилизаторы и другие — при введении в неполярные полимеры снижают их электроизоляционные свойства. Поэтому пластмассы на основе таких полимеров — отличных диэлектриков — состоят практически только из связующего. В табл. 23.12 приведены свойства термопластичных полимерных органических диэлектриков и материалов на их основе, в табл. 23.13 — свойства термореактивных пластмасс, а в табл. 23.14 — слоистых пластиков с листовым (рулонным) наполнителем.  [c.557]

Электроизоляционные свойства. Почти все пластические массы обладают более или менее ясно выраженными электроизоляционными свойствами, зависящими от состава и строения полимерного связующего, типа и количественного содержания наполнителя, влаго- и водостойкости готовой детали и некоторых других факторов. Большинство прессматериалов на основе поликонденсационных полимеров удовлетворительно работает в качестве низкочастотных диэлектриков при частоте тока порядка 50 гц. К высокочастотным диэлектрикам относятся полиэтилен, полистирол и его хлорпроизводные, а также фторопласты, отличающиеся малыми диэлектрическими потерями, практически не изменяющимися в зависимости от частоты тока. Они могут использоваться также и при сверхвысоких частотах. Однако для этих полимеров, помимо невысокой деформационной теплостойкости (< 60— 70° по Мартенсу), характерно ухудшение электроизоляционных свойств с повышением температуры. Наиболее стабильны в этом отношении полистирол, сохраняющий без изменения свои диэлектрические характеристики в интервале —60 — до +60° С, и фторопласт-4, который может работать без существенного ухудшения электроизоляционных свойств в интервале от —60 до +200° С.  [c.393]


Полимерные материалы обладают ценнейшими свойствами, которые можно с успехом использовать в машиностроении малой плотностью большим сопротивлением износу достаточной прочностью и пластичностью коррозионной стойкостью и электрическими свойствами (диэлектрики, полупроводники). Особая ценность полимерных материалов заключается в том, что их свойства можно варьировать в широких пределах, меняя наполнители пластмасс, технологию переработки и, наконец, само строение высокополимера как по химическому строению цепей, так И по взаимному расположению макромолекул.  [c.12]

Электрические свойства являются прежде всего отражением химического состава полимеров и, в гораздо меньшей степени, — его структуры. Ионные полимеры, например, полиакриловая кислота и ее соли, ведут себя как низкомолекулярные электролиты, а полимерные материалы, о которых говорится в этой книге, имеют характер диэлектриков.  [c.32]

Для электроизоляционных материалов решающее значение имеет их стойкость к нагреву, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По этой стойкости диэлектрики разделяют на классы (ГОСТ 8865-93) Y, А, Е, В, F, Н и др. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90°С. Самыми стойкими к нагреву являются слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180 °С и выше.  [c.603]

По электрическим свойствам большинство полимерных материалов относят к диэлектрикам.  [c.60]

Для создания лакокрасочных покрытий применяют порошки поливинилхлорида, акрила, полиамида и эпоксидных смол с диаметром частиц 40—100 мкм. Широкое применение получили покрытия, которые образуются в результате электроосаждения порошков таких полимерных материалов, как политетрафторэтилен, полиэтилен и полиуретаны [197]. Масса прилипшего порошка зависит от свойств поверхности электрода. Исследовали влияние материала электрода на адгезию порошка полиэтилена, когда в качестве электрода использовали металл (латунь) и диэлектрик (плексиглас). Зависимость прилипшего порошка полиэтилена от потенциала, подаваемого на электрод, и материала электрода будет следующей [228]  [c.276]

Кроме полимерных и других органических материалов в технике связи применяются неорганические материалы, такие, как керамика, стекла, ситаллы, окислы металлов, кварц, слюда, асбест. Особенно широкое применение имеют керамические диэлектрики. Эта группа материалов характеризуется высокой нагревостойкостью, влагостойкостью и широким диапазоном диэлектрических свойств. Среди керамических материалов имеются сегнетоэлектрики, т. е. материалы с высокой и сверхвысокой диэлектрической проницаемостью, материалы с малой величиной температурного коэффициента емкости, отрицательным ТКЕ. Материалы этого типа имеют малую стоимость и большую долговечность как в работе, так и в хранении.  [c.210]

Универсальность метода испарения и конденсации в вакууме позволяет наносить покрытия на различные диэлектрические подложки пластмассы, бумагу, стекло, керамику, ткани. Много работ посвящено электрическим, магнитным и оптическим свойствам тонких пленок на диэлектриках, в то время как вопросам нанесения защитно-декоративных покрытий, а также металлизации рулонных и листовых полимерных материалов уделяется недостаточно внимания.  [c.301]

Одним из перспективных методов создания фольгированных диэлектриков является получение сверхтонкой фольги вакуумным методом (см. п. 3, гл. ХП) или прямое нанесение металлического покрытия на полимер путем испарения и конденсации в вакууме. Преимущества вакуумного метода очевидны уменьшается расход цветных металлов, так как толщина покрытий может регулироваться в широких пределах в зависимости от назначения схемы устраняется необходимость создания промежуточного оксидного слоя, который ухудшает диэлектрические свойства материала, и упрощается общая технологическая схема создания печатных плат за счет уменьшения числа операций. Наряду с листовыми материалами металлизировать можно полимерные пленки, такие как полиэтилентерефталат, полиимид и др.  [c.325]

Покровные пленки из фторопластов отличаются высокой устойчивостью к воздействию агрессивных сред, в том числе почти всех органических растворителей. Среди всех полимерных покрытий фторопласт является одним из лучших диэлектриков. Его высокие механические и диэлектрические свойства сохраняются при повышенных и минусовых температурах.  [c.27]


На механических свойствах полимерных композитов с минеральными наполнителями особенно отрицательно сказывается скопление воды на поверхности раздела. Вода может выщелачивать растворимые вещества с поверхности раздела, что вызывает коррозию наполнителя под напряжением или растрескивание смолы из-за осмотического давления при этом смола работает как диэлектрик при электрохимической коррозии металлов. Полярные функциональные группы полимеров (аминные гидроксильные или карбоксильные) наиболее прочно связываются с поверхностью наполнителя и эффективно препятствуют скоплению молекул воды на поверхности раздела. Полиолефины и другие неполярные полимеры почти не способны конкурировать с водой на поверхности наполнителя, хотя в массе эти полимеры наиболее стойки к растворению или химическому взаимодействию с водой. Роль силановых аппретов заключается не в том, что они препятствуют достижению молекулами воды границы раздела полимер — наполнитель, а в том, что они, распределяясь на поверхности наполнителя, мешают молекулам воды образовывать пленки или капли. Такое представление об адгезии полимера к наполнителю предполагает, что ухудшение адгезии всегда предшествует коррозии. Любая полимерная пленка, имеющая адгезию к минеральному наполнителю и препятствующая скоплению воды на поверхности раздела, предотвращает коррозию поверхности минерального наполнителя под действием воды.  [c.210]

В органич. материалах может возникать послерадиац. старение, к-рое обусловлено в ося. хим. реакциями свободных радикалов, образовавшихся при облучении полимеров с кислородом воздуха. Радиац. стойкость Полимерных диэлектриков определяется, как правило, вх механвч. (а не электрич.) свойствами, т. к. большинство полимеров становятся хрупкими и теряют способность нести механич. нагрузки после доз, к-рые ещё не вызывают существ, изменений электрич. свойств.  [c.203]

Электроэлектрет может быть приготовлен практически из любого полимерного диэлектрика. Лучшими электретными материалами являются политетрафторэтилен (ПТФЭ) и сополимеры на его основе [— F2— F2—]п, [— F2—СН2—] и т. п. Эти материалы отличаются термо- и влагостойкостью, эластичностью, высокой механической и электрической прочностью, чрезвычайно низкой проводимостью (а 10-2° См/м). Данные параметры определяют долговременную стабильность свойств полимерного электрета.  [c.165]

Согласно простейшей теории разрядов в газовых прослойках (см. 3-1), в переменном электрическом поле частота разрядов п не должна существенно зависеть от 0, поскольку изменения температуры практически не сказываются на величинах Су, с , i/ p, i/nor, входящих в соотношение (3-12). Экспериментальной проверкой установлено, что действительно показания индикатора частичных разрядов не зависят от температуры испытуемой пленки ПТФЭ в интервале от 20 до 250° С. С другой стороны, как видно из рис. 1-9, время жизни полимерных диэлектриков при заданном значении Е также почти не зависит от температуры у ПТФЭ — в интервале от 20 до 100° С, а у ПС и ПЭТФ — вплоть до значений 6, при которых происходит изменение физических свойств пленки только за счет действия повышенной температуры. Неизменность характеристик разрядов и времени жизни полимерных пленок при изменении температуры еще раз подтверждает, что старение пленок в пределах отмеченного интервала 0 в переменном поле действительно обусловлено частичными разрядами.  [c.101]

Кроме того, в твердых диэлектриках наблюдаются электроннорелаксационная, резонансная, структурная и самопроизвольная (спонтанная) поляризации, которые в полимерных материалах, как правило, не проявляются. Таким образом, пз всех рассмотренных видов поляризации стеклопластики на основе полиэфирных, эпоксидных, фенольно-формальдегидных и других смол следует отнести к материалам, которые обладают почти всеми видами поляризации одновременно, так как смолы обладают электронной и диполы-ю-релаксациоиной поляризациями одновременно, а стеклонаполнитель — ионно-релаксационной поляризацией. Основной предпосылкой для определения плотности полимерных материалов служит формула Клаузиуса—Моссоти, связывающая электрические свойства молекул, диэлектрическую проницаемость, поляризуемость и дипольный момент с плотностью и молекулярной массой  [c.98]

Диэлектрические свойства. Все пластические массы практически являются диэлектриками (за исключением случая введения специальных наполнителей или применения специальных полимеров). Диэлектрические свойства пластических масс определяются в основном химическим строением и структурой полимерного связующего, а также наполнителем. Наилучшими диэлектриками для высокочастотной техники являются полиэтилен, полистирол, политетрафторэтилен. Тангенс угла диэлектрических потерь этих материалов при 10 гц 0,0002—0,0006, диэлектрическая проницаемость 1,9—2,6 удельное объемное и поверхностное электросопротивление — 10 —10 ом-см (ом), электрическая прочность 20—40 кв мм. Малым тангенсом угла диэлектрических потерь и диэлектрической проницаемостью обладают пенопласты. Хорошие электроизоляционные свойства имеют слоистые пластики и прессмате-риалы с минеральным наполнителем. Лучшими и наиболее стабильными в условиях высокой температуры и повышенной влажности диэлектрическими свойствами обладают пластики на основе кремнийорганических смол и политетрафторэтилена.  [c.14]

Диэлектрическая проницаемость и тангенс угла диэлектрических потерь. Эти свойства вааимосвязаны. Если внести диэлектрик, например полимерную пленку, в электрическое поле, то происходит его поляризация, т. е. образование электрического (диполь-ного) момента г, направленного вдоль поля  [c.132]


Пластическими массами называют высоко-полимерные материалы или композиции их с органическими или неорганическими веществами, способные при определенных условиях (давлении п температуре) переходить в пластическое состояиие и принимать под действием- нагрузок заданную форму. Пластические массы сочетают ряд ценных свойств. Они имеют низкую плотность, устойчивы к атмосферной коррозии, ко многим кислотам и щелочам, растворам солей, являются теплоизоляционными материалами, хорошими диэлектриками, могут быть оптически- и радиопрозрачиыми, упругими или эластичными. Оии легко формуются в изделия, обрабатываются резанием, а некоторые нз них по удельной пррчности превосходят углеродистые стали и сплавы цветных металлов. Но пластмассы имеют низкую теплостойкость, теплопроводность, твердость, подвержены старению. Свойства некоторых пластмасс см. табл. 17.  [c.142]

В силу того, что ковалентная связь создается взаимодействием валентных электронов, кристаллы, атомы которых связаны такой связью, называют иногда валентными. Преимущественно ковалентная связь имеет место в таких соединениях, как карбиды (РезС, 81С), нитриды (АШ), которые имеют большое значение в технических сплавах. Прочность ковалентной связи зависит от степени перекрытия орбит валентных электронов с увеличением перекрытия прочность связи повышается. Поэтому свойства тел с ковалентным типом связи могут сильно различаться. Характерными свойствами для таких материалов является малая плотность, высокая хрупкость, в ряде случаев очень высокая твердость (алмаз, карбиды, нитриды). Материалы с ковалентной связью являются диэлектриками или полупроводниками. Находят широкое применение на базе их создаются полупроводниковые материалы соединения - карбиды, нитриды, которые являются важнейшими упрочняющими фазами в высокопрочных металлических сплавах. Ковалентный тип связи также весьма важен и в полимерных материалах.  [c.9]

Покрытия на основе полимерных пленок дают возможность в щироких пределах варьировать цвет и фактуру поверхности различных конструкционных материалов, защищая их от коррозии. Кроме того, они могут служить отличными диэлектриками при относительно высокой термоустойчивости, прекрасно сопротивляться воздействию многих агрессивных жидкостей и газов, обладать рядом ценных светотехнических свойств и т. д.  [c.22]


Смотреть страницы где упоминается термин СВОЙСТВА ПОЛИМЕРНЫХ ДИЭЛЕКТРИКОВ : [c.4]    [c.259]   
Смотреть главы в:

Электроизоляционные лаки, пленки и волокна  -> СВОЙСТВА ПОЛИМЕРНЫХ ДИЭЛЕКТРИКОВ



ПОИСК



Диэлектрик

Диэлектрики свойства

Изделия из диэлектрических материалов, диэлектрики с модифицированными свойствами ФАРФОРОВЫЕ, СТЕКЛЯННЫЕ И ПОЛИМЕРНЫЕ ИЗОЛЯТОРЫ



© 2025 Mash-xxl.info Реклама на сайте