Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы о диссипативных системах

Общие теоремы о диссипативных системах  [c.29]

В 12 устанавливаются общие теоремы о поведении интегральных кривых периодической системы двух дифферен-цивльных уравнений. В частности, здесь устанавливается фундаментальная теорема Массера о существовании периодических решений систем второго порядка. Подробно изу-щеТСЯ поведение диссипативной системы второго порядка. Исследуется возможная структура множества 5 такой системы.  [c.7]


Полученное соотношение представляет собой флуктуационно-дис-сипационную теорему. Соответствующие общие соотношения называют формулами Кэллена—Вельтона. Эта теорема связывает флуктуационные свойства системы (корреляционную функцию) с ее диссипативными свойствами (мнимая часть восприимчивости).  [c.83]

Большое разнообразие встречающихся в физике Н, у. м. ф. затрудняет развитие общих матем. методов их исследования. Лишь для сравнительно немногих Н. у. м. ф. доказаны теоремы существования и единственности, к таким относятся ур-ния Янга — Миллса, ур-ния Навье — Стокса в двумерном случае, ур-ния газовой динамики. Для ур-ний Навье — Стокса в трёхмерном случае теорема единственности решения задачи Коши до сих пор не доказана. Затруднена даже проблема классификации Н. у. м. ф. Часть их попадает под классич. разделение на эллиптич., гиперболич. и параболич. ур-ния, но значит, число важных Н. у. м. ф. (среди них Кортевега — де Фриса ур-ыие, Кадомцева — Петвиашвили ур-ние) не могут быть отнесены ни к одному из этих типов. Нек-рую классификацию Н. у. м. ф. можно осуществить на основе физ. соображений. Прежде всего это разделение на стационарные и ЭВО.ТЮЦ. ур-ния. Большинство стационарных ур-ний относится к эллиптич. типу. Среди эволюц. ур-ний, явно содержащих производные по времени, можно выделить консервативные Н. у. м. ф., сохраняющие интеграл энергии, и диссипативные Н. у. м. ф., описывающие открытые системы , обменивающиеся энергией с внешним миром . Одним из интересных достижений теории Н. у. м. ф. было обнаружение того факта, что консервативные Н. у. м. ф., как правило, являются гамильтоновыми системами, хотя явное введение кано-иич. переменных зачастую оказывается трудной задачей. Установлена гамильтонова природа большинства консервативных обобщений ур-ний Эйлера и даже системы ур-ний Власова, описывающих плазму без столкновений. Для гамильтоновых систем, близких к линейным, развиты методы теории возмущений, позволяющие учитывать нелинейные эффекты и производить статистич. описание решений. Все перечисленные выше универсальные Н. у. м. ф., за исключением Бюргерса ур-ния и Хохлова — Заболотской ур-ния, являются гамильтоновыми.  [c.315]

Как указывает подзаголовок этой книги, основным методом изложения избран генетический подход. Авторы стремятся объяснить генезис основных идей и понятий теории динамических систем с ударными взаимодействиями, а также продемонстрировать их естественность и эффективность. Ключевым моментом являются найденные недавно теоремы о предельном переходе, обосновывающие различные математические модели теории удара. Их суть заключается в следующем. Односторонняя связь, наложенная на систему, заменяется полем упругих и диссипативных сил. Затем коэффициенты упругости и вязкости некоторым согласованным способом устремляются к бесконечности. Доказывается, что движение такой свободной системы с фиксированными начальными данными стремится на каждом конечном промежутке времени к движению с ударами. При отсутствии диссипации энергии получаем упругий удар, а при надлежащем выборе диссипативной функции Рэлея (задающей структуру сил трения) можно получить в пределе модель Ньютона и более общий удар с вязким трением. Идея реализации связей с помощью предельного перехода в полных уравнениях динамики восходит к работам Клейна, Пранд-тля, Каратеодори и Куранта. Эти результаты позволяют, в частности, решить ряд новых задач об-устойчивости периодических движений с ударами, а также исследовать эволюцию биллиардных систем при неупругих столкновениях, когда имеется слабая диссипация энергии.  [c.4]


Вращающаяся с угловой скоростью ш изотермическая п-компонептная система с произвольной анизотропией находится в состоянии механического равновесия. Считать, что в системе существенны лишь процессы диффузии в отсутствие всех внешних полей, кроме центробежных, и справедлива теорема Пригожина (задача 23). При этом выражение диссипативной функции представляется в следующей частной форме общего выражения (1.14)  [c.73]

По своей природе это явление очень схоже с броуновским движением, так что теорему Найквиста можно значительно обобщить. Это обобщение было сделано целым рядом авторов, например Такаха-си [14], Колленом и Белтоном [13] и Кубо [10]. Обобщенную теорему Найквиста сейчас называют флуктуационно-диссипационной теоремой, так как она наиболее общим образом связывает флуктуации некоторых физических величин в равновесной системе с характеристиками диссипативного процесса, протекающего в неравновесной системе, т. е. в системе, выведенной из состояния равновесия под действием внешних сил.  [c.441]


Смотреть страницы где упоминается термин Общие теоремы о диссипативных системах : [c.180]   
Смотреть главы в:

Нелокальные проблемы теории колебаний  -> Общие теоремы о диссипативных системах



ПОИСК



Общие теоремы

Система диссипативная

Теорема системы



© 2025 Mash-xxl.info Реклама на сайте