Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодные установки подземных сооружений

Глава 8. КАТОДНЫЕ УСТАНОВКИ ПОДЗЕМНЫХ СООРУЖЕНИИ  [c.179]

Расчеты катодной защиты подземного сооружения выполняются для определения мощности катодных установок и рационального размещения их вдоль трассы подземного сооружения. Место установки станции катодной защиты (СКЗ) выбирается исходя из ряда факторов наличия источников электроэнергии, удобства обслуживания и, главным образом, распределения потенциалов (плотности тока) вдоль сооружения. Зная закономерности распределения потенциалов и величину минимально необходимого смещения потенциала (или величину защитного потенциала), можно оценить зону защитного действия при заданном режиме. Варьируя величинами силы тока СКЗ, можно подобрать такой шаг расстановки защитных устройств, который отвечает получению максимального экономического эффекта. Соответственно величину тока следует признать основной харак-  [c.192]


Источниками блуждающих токов могут быть линии электропередачи системы провод—земля, электролизеры и гальванические ванны, катодные установки, работающие сварочные агрегаты, заземления постоянного тока и т. п. Среднесуточная плотность токов утечки, превышающая 0,15 мА/дм , считается опасной. В таких зонах подземные металлические сооружения нуждаются в специальных методах защиты от коррозии блуждающими токами.  [c.390]

Из этого следует, что катодная защита большими токами изолированных сооружений в условиях плотной застройки от почвенной коррозии не всегда оправдывает себя и требует глубокого изучения. В этой связи целесообразно применять катодную установку для выполнения одновременно двух функций для защиты подземных сооружений от коррозии и ликвидации сырости подвальных помещений, фундаментов зданий (магазины, склады, мастерские, овощехранилища, гаражи и т. п.). Для этого, например, достаточно возле здания или на его дне во время строительства установить горизонтальный или вертикальный анодный заземлитель из малорастворимого материала.  [c.34]

В настоящее время важной народнохозяйственной задачей является разработка рекомендации по использованию катодной установки для одновременной защиты подземных сооружений от коррозии и электроосмотической осушки ответственных строительных объектов.  [c.34]

Установлено, что ежегодный рост количества и мощности катодных станций вызван не агрессивностью грунтов, а действием блуждающих токов развивающегося рельсового транспорта (трамвая). Катодные установки, в свою очередь, наводят огромные блуждающие токи на близлежащие сооружения, на которых также появляются опасные коррозионные участки. Таким образом, создается ситуация, при которой все подземные сооружения города требуют защиты либо от почвенной коррозии, либо от блуждающих токов. На защиту такой системы коммуникаций (цепочки) расходуется огромное количество металла, электроэнергии и других средств.  [c.60]

При работе систем катодной защиты через землю течет постоянный ток, стекающий с анодных заземлителей и натекающий на объект с катодной защитой. Поэтому такие системы согласно D1N 57150 и VDE 0150 являются установками постоянного тока, представляющие собой источники блуждающих токов, которые могут вызвать коррозионные явления на других подземных металлических сооружениях например на трубопроводах и кабелях [12]. Защитный ток создает воронку напряжений в области анодных заземлителей. При этом потенциал грунта получается более высоким по отношению к потенциалу далекой земли. Над дефектами изоляции трубопровода защитный ток создает катодные воронки напряжений. Здесь потенциал грунта снижается по отнощению к потенциалу далекой земли. На другие металлические подземные сооружения, находящиеся в области анодных заземлителей, тоже натекают токи, уходящие в отрицательные участки катодных воронок напряжения таким образом, эти сооружения приобретают в первом случае катодную поляризацию, а во втором — анодную (см. рис. 10.1). В местах стекания (выхода) тока происходит анодная коррозия.  [c.237]


При проведении опытной катодной защиты преследуется цель правильно выбрать место расположения анодного заземления (или нескольких анодных заземлений) и точки дренажа (или нескольких точек) для одной установки. Опытное анодное заземление по согласованию с организациями, эксплуатирующими подземное сооружение, выполняется из стальных электродов диаметром 16—18 мм, длиной  [c.88]

При ОПЫТНОЙ катодной защите путем установки анодного заземления (заземлений) в различных местах и изменения точки дренажа выбирается оптимальный вариант, когда достигается максимальная зона защитного потенциала на подземном сооружении.  [c.89]

При наладке включать станцию катодной защиты можно только при подключенной нагрузке, т. е. при присоединении кабелей к подземному сооружению и анодному заземлению. Нельзя подключать установку под напряжение, не соответствующее положению перемычек на клеммнике переменного тока, и при отключенном защитном заземлении.  [c.209]

Катодная защита достаточно широко и успешно используется в практике. Система для осуществления катодной защиты состоит из собственно защищаемого металлического объекта и анода. В качестве анодов обычно используются вышедшие из употребления стальные балки, рельсы и тому подобный лом. Отрицательный полюс источника постоянного тока (обычно выпрямитель) подсоединяется к защищаемому объекту, положительный полюс — к аноду (анодам). Для осуществления катодной защиты выпускаются стационарные установки - катодные станции. Катодная защита используется для предотвращения коррозии подземных сооружений во влажных грунтах, а также для защиты подводных объектов (корпуса морских судов, морские эстакады и портовые сооружения, подземные трубопроводы и др.).  [c.114]

Электрохимическая защита обсадных колонн скважин, подключенных к групповому газо- или нефтесборному пункту, обеспечивается одной (кустовой) катодной установкой. Током этой установки достигается катодная поляризация таких подземных металлических сооружений куста, как коммуникации куста (подземное оборудование низкотемпературной сепарации, резервуары и другие), шлейфы, водопровод и обсадные колонны скважин.  [c.73]

Поляризованные протекторные установки (рис. 25г) представляют собой обычную систему протекторов, присоединяемых к защищаемому подземному сооружению через полупроводниковые вентильные элементы. Поляризованные протекторные установки наиболее рационально использовать для защиты подземных сооружений от влияния блуждающих переменных токов. Они дают возможность через протектор снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них, благодаря наличию в цепи вентильного элемента, катодный полупериод, который обеспечивает их автоматическую катодную защиту.  [c.112]

Работа протекторной установки удовлетворительна, когда сдвиг потенциала в катодную сторону на подземном сооружении при ее работе будет на 0,2 В и более, а сила тока равна или близка к расчетной.  [c.255]

В настоящее время наиболее мощными и распространенными из названных источников блуждающих токов являются линии электрифицированных железных дорог постоянного тока, трамвая и метрополитена, а также установки катодной защиты подземных металлических сооружений. Так как устройство электроснабжения электрифицированных железных дорог, трамвая и метрополитена принципиально одинаково, то и процессы возникновения в земле блуждающих токов от этих источников будут одинаковы.  [c.235]

Первая группа включает в себя комплекс мероприятий, направленных на уменьшение блуждающих токов в земле. К ней относятся меры, применяемые на источниках блуждающих токов и имеющие целью уменьшить утечку тока в землю, а следовательно, и блуждающие токи, попадающие в подземное сооружение. Однако ограничить блуждающий ток в земле можно не на всех его источниках. В частности, на таких источниках, как ЛЭП постоянного тока, работающих по системе провод — земля , и катодных установках ограничить блуждающий ток в земле практически невозможно. Единственное, что можно сделать, — это путем  [c.256]


Установки защиты подземных металлических сооружений от коррозии, вызываемой блуждающими токами, обеспечивают катодную поляризацию металла сооружений, т. е. создают на них защитные потенциалы. При усиленной электродренажной или катодной защите к сооружению подключают минусовой вывод источника постоян-  [c.22]

Если У КЗ защищает подземные сооружения с различными критериями защищенности, она представляет собой установку совместной катодной защиты. В зависимости от размещения анодного заземления по отношению к защищаемому объекту и составных частей анодного заземления по отношению друг к другу различают У КЗ с сосредоточенным и распределенным анодным заземлением (рис. 16).  [c.128]

Катодная защита применяется главным образом для предохранения металлических конструкций от коррозии в условиях несильно агрессивных сред, как, например, почвы, морской и речной воды и т. п. Наибольшее применение катодная защита получила на подземных трубопроводах, газопроводах, кабельных установках и других подземных сооружениях в условиях почвенной коррозии, для защиты морских металлических конструкций и т. п.  [c.298]

Материалом анода в установках катодной защиты для подземных сооружений чаще всего является сталь, но анодами могут служить и алюминий, медь, цинк, уголь, графит.  [c.300]

Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите.  [c.13]

Защитные мероприятия делятся на активные и пассивные. Электрохимическая защита представляет собой важную и обширную часть защитных мероприятий, характеризующихся активным вмешательством в процессы коррозии. Пассивные защитные мероприятия заключаются в разъединении защищаемой поверхности и агрессивной коррозионной среды при помощи покрытия. Любые возможные активные и пассивные защитные мероприятия могут проводиться и отдельно, однако сочетание обоих способов защиты дает ряд преимуществ и в некоторых случаях даже настоятельно необходимо. Катодная защита и нанесение покрытий почти идеально дополняют друг друга. Это обусловливается, во-первых, экономическими причинами в принципе можно активно защищать и сооружения без покрытий, но затраты на защитную установку и эксплуатационные расходы при этом будут бесспорно высокими, так как потребуется большой катодный защитный ток. Кроме того, в случае подземных трубопроводов имеются и технические соображения, по которым катодная защита поверхностей без покрытия нежелательна. В первую очередь имеется в виду влияние на близрасположенные металлические конструкции, вызывающее опасность их коррозии. Такая опасность может оказаться весьма значительной, и предотвратить ее техническими средствами либо вообще невозможно, либо очень трудно.  [c.145]

При установке па трубопроводе изолирующих фланцев общая величина попадающих в него блуждающих токов значительно снижается, при этом может произойти также изменение поля блуждающего тока на подземных металлических сооружениях, расположенных вблизи. Максимальный эффект снижения блуждающих токов в трубопроводе достигается при установке изолирующих фланцев в местах протекания максимального тока на границе анодной и катодной зон.  [c.167]

В книге рассмотрены вопросы защиты от коррозии подземных металлических сооружений, а также эксплуатации внедряемых в практику высокоэффективных защитных устройств. Даны краткие сведения о противокоррозионных автоматических установках. Особое внимание обращено на описание основных элементов схем этих установок. Освещены вопросы монтажа, наладки и проверки защитных устройств и их отдельных узлов. Рассмотрены рациональные методы обслуживания автоматических электродренажей и катодных станций.  [c.2]

Избегать протекания электрического тока между металлом и окружающей средой. Это относится к подземным и подводным трубопроводам, основаниям резервуаров и сооружений, сварочным аппаратам, линиям электрической тяги, энергетическим установкам и системам катодной защиты.  [c.153]

Исходными данными для расчёта и проектирования электрохимической защиты (в то.м числе - катодной) являются совмещенный пла1 проектируемых и существующих подземных сооружений, а также рельсовых сетей электрифицированного транспорта в масштабе 1 2000 или 1 5000. По проектируемым и рассчитываемым сооружениям, а также по уже существующим должны быть указаны длина и диаметр сооружений по существующим сооружениям - места установки электрохимической защиты по рельсовым сетям- точки подключения отрицательных кабелей и существующих дренажных установок данные о коррозионной активности фунтов и о наличии блуждающих токов, геолого -геофафический разрез для выбора конструкций анодных заземлителей площадь территории.  [c.7]

Целесообразность применения того или иного способа борьбы с коррозией подземных сооружений может быть определена в результате сопоставления данных по длительной эксплуатации защищенных и незащищенных подземных сооружений. Однако в СССР фактически не имеется данных по коррозии незащищенных газопроводов, так как все газопроводы уже в период строительства подвергались защите битумными противокоррозионными покрытиями. Первый магистральный газопровод Саратов — Москва был обеспечен на шестом году эксплуатации электрохимической защитой, а последующие газопроводы Дашава — Киев, Ставрополь— Москва оборудованы установками катодной защиты непосредственно по окончании строительства на первый и второй годы эксплуатации. Это позволило обеспечить безаварийную работу газопроводов в течение длительного срока.  [c.206]


Методы активной защиты, применяемой в устойчивых анодных и знакопеременных зонах подземных сооружений, основаны на создании защитного потенциала, средняя величина которого выбирается таким образом, чтобы перевести эти зоны в устойчивое катодное состояние. Накопленный к настоящему времени опыт защиты городских подзейных сооружений от коррозии позволяет осущест-вить выбор рациональных методов и средств электрозащиты. В результате анализа коррозионных измерений намечаются места установки дренажных устройств, которые, как правило, располагаются в точках максимального приближения подземных сооружений к пунктам подключения отсасывающих кабелей трамвая или железной дороги. Периферийные участки трубопроводов и кабелей, находящиеся в опасной зоне влияния блуждающих токов  [c.3]

Несколько меньщую опасность с этой точки зрения представляет защита катодными установками, так как токи катодной защиты значительно меньше, чем дренажной. Однако и здесь может иметь место возникновение искры или разогрев перемычки при случайном замыкании сооружений, подключенных к катодной защите, на другие металлоконструкции. Поэтому при проектировании дренажной и катодной защиты кабелей и других подземных сооружений, проложенных на пожаро- и взрывоопасных предприятиях, следует опасные с указанной точки зрения объекты отделить изолирующими фланцами или предпринять другие меры, обеспечивающие безопасность.  [c.90]

Называется так же принудительным или форсированным дренажем. Предназначается для защиты подземные сооружений в зонах- переменной полярности. Основным отличием схем этих дренажей является создание постоянного отрицательного потенциала на защищаемом объекте, даже в то время, когда в обычных условиях полярность его меняется на обратную. Это достигается за счет последовательного включения в хему дополнительного источника постоянного тока. Таким образом, создается комбинированная дренажно-катодная установка. Широкого практического применения усиленный дренаж не получил из-за следующих его недостатков накладываемый положительный потенциал дополнительного источни-  [c.192]

Кроме вышеуказанных конструкций катодных станций, имеются катодные станции, с автоматическим контролем верхнего предела отрицательного потенциала на защищаемом подземном сооружении. Примером такой станции является автоматическая станция АСКЗ, конструкции ВНИИСТ и другие более совершенные установки.  [c.204]

Защита подземных сооружений от электрокоррозии заключается в выборе рациональной трассы их прокладки, применении противокоррозионных покрыгий, изолирующей канализации, секционирования, а также электрических способов защиты. Все подземные сооружения, находящиеся вблизи электрифицированных участков, покрывают битумом, при пересечении железных дорог это покрытие должно быть усиленным. Кабели с голыми свинцовыми оболочками укладывают в неметаллических трубах. Электрические способы защиты от электрокоррозии следующие прямой, поляризованный и усиленный электрические дренажи, катодные установки и анодные электроды (проекторы). В контактной сети полярность положительная, при этом анодные зоны на подземных сооружениях сосредоточены, как правило, возле тяговых подстанций, что облегчает защиту сооружений от электрокоррозии. Основной способ защиты — электрический дренаж. Он служит для отвода блуждающих токов из подземного сооружения в их источник — рельсы. Металлические подземные сооружения через определенные промежутки соединяют с рельсовыми цепями так, чтобы не нарушить нормальную работу устройств СЦБ. Электрический дренаж не позволяет току выйти из подземных металлических сооружений в землю, а следовательно, устраняет возможность электрокоррозии. На участках переменного тока защита металлических сооружений не требуется, так как опасную электрокоррозию вызывает только ток низкой частоты и очень большой плотности, чего там нет.  [c.157]

Для защиты подземных металлических сооружений можно применять катодную станцию с выпрямителем ВСА-10, смонтированную в металлическом вожухе для установки на открытом воздухе, в горрдскил условиях.  [c.204]


Смотреть страницы где упоминается термин Катодные установки подземных сооружений : [c.396]    [c.170]    [c.171]    [c.233]    [c.235]    [c.271]    [c.191]    [c.118]    [c.281]    [c.96]    [c.98]    [c.99]   
Смотреть главы в:

Подземная коррозия металлов и методы борьбы с ней  -> Катодные установки подземных сооружений



ПОИСК



V катодная

Катодные установки

Сооружения

Сооружения г подземные



© 2025 Mash-xxl.info Реклама на сайте