Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности коррозионного поведения различных металлов

Особенности коррозионного поведения различных металлов  [c.51]

После разработки новых технологических схем получения титана, циркония и тантала эти металлы производятся теперь в количествах, достаточных для применения в различных областях техники. Поэтому детальное изучение коррозионного поведения этих металлов стало важным особенно в связи с тем, что они отличаются высокой стойкостью, в частности против действия кислот.  [c.424]

В разных средах скорость коррозии одного и того же металла может быть различной. Поведение того или иного металла может совершенно измениться в зависимости От особенностей коррозионной среды.  [c.52]


В естественной коррозии различные металлы создают свои -со1>ственные токи некоторые генерируют -большие токи, чем другие, и поэтому подвергаются более сильной коррозии. Если они все получают одинаковый ток от внешнего источника, они находятся в равных условиях, и опыт не дает никаких указаний относительно способности каждого материала генерировать собственный коррозионный ток. Таким образом вышеупомянутые испытания безусловно будут обнаруживать полное расхождение с результатами полевых или эксплоатационных опытов. Например некоторые результаты электролитических испытаний, опубликованные в США в 1924 г., дают почти одинаковую скорость коррозии как для литого железа, так и для никелевого серебра, бронзы или лат и, которые в действительности много долговечнее железа. При определении способности материалов противостоять блуждающим электрическим токам анодные испытания не бесполезны, в особенности, если поведение некоторых испытываемых материалов зависит от сохранения пассивного состояния однако испытание должно проводиться с материалами, погруженными в характерные образцы почвы или воды, которые будут окружать их и в эксплоатации, и нри плотности тока, которую можно ожидать в эксплоатации.  [c.807]

В пределах внутренней части поликристаллического металла процесс простого скольжения заставляет каждое зерно принять ступенчатое очертание при условии, что его соседи уступают место для образующихся ступенек но практически соседние зерна также образуют ступеньки и, за исключением случайного стечения обстоятельств, ступеньки, образованные смежными зернами, не будут входить одна в другую. Таким образом, при напряжении, достаточном, чтобы произвести скольжение в каждом изолированном зерне, обычный процесс скольжения становится невозможным, исключая может быть внутреннюю часть больших зерен, и должен быть введен какой-то другой метод деформации, требующий большую энергию. Вероятно это является одной из причин, почему поликристаллический металл крепче, чем монокристалл прочность обычно повышается с - уменьшением размера зерна. При использовании одного из методов деформации с переменной нагрузкой первоначальные зерна превращаются в обломки, которые поворачиваются в благоприятном направлении таким путем материал приобретает предпочтительную ориентировку, так как некоторые кристаллические плоскости различных обломков стремятся ориентироваться параллельно направлению приложенной силы. Предпочтительная ориентировка особенно заметна на прокатанном металле, который показывает разные физические свойства (и различное коррозионное поведение), в зависимости от изменения направлений при испытании.  [c.344]

Коррозионное растрескивание происходит при одновременном воздействии значительных растягивающих напряжений и коррозионной среды (например, морской воды, конденсата, сварочных флюсов, обезжиривающих смесей, смазок, органических растворителей и различных химических веществ (табл. 3.2)). Растягивающие напряжения возникают на поверхности металла при статической нагрузке. Коррозионное воздействие приводит к концентрированию напряжений и превышению ими предела текучести металла. При достаточно длительной выдержке сочетание коррозии металла с высокими локальными концентрациями напряжений приводит в конечном счете к потере прочности. Неметаллы также проявляют сходные особенности поведения.  [c.46]


В настоящем справочном издании отражены последние достижения в области изучения коррозии и защиты от коррозии. В достаточно сжатой форме описано коррозионное поведение основных металлов в наиболее распространенных средах, антикоррозионные свойства и основные технологические особенности металлических, лакокрасочных, полимерных и силикатных покрытий,, особенности поведения металлических материалов в напряженном состоянии и методика коррозионных испытаний. Как правило, особенности коррозионного поведения различных материалов рассмотрены с учетом специфики их пас-сявацни и с использованием диаграмм электрохимического равновесия — диаграмм Пурбе. В конце каждого раздела авторы справочника приводят библиографический список использованных работ, на каждую из которых в тексте даны соответствующие ссылки. К сожалению, работы советских исследователей использованы мало. Ряд важнейших достижений и открытий в области коррозии и защиты, сделанных в нашей стране и известных за рубежом, в справочнике не упомянут.  [c.4]

Коррозионное поведение гетерогенных сплавов при различных потенциалах прежде всего определяется особенностями анодного поведения структурных составляющих и физически неоднородных участков металла. Для различных структурных составляющих ход криво анодно поляризации будет различен. Он будет также различен для отдельных физически неоднородных участков поверхности металла, вызванных несовершенством структуры и особеи-иo тя ПI кристаллическоГ) решетки металлов (зерно, граница зерна, блок, граница блока, дислокащш, атомные неоднородности, впадины, выступы и др.).  [c.35]

Ускоренные испытания металлов и средств защиты являются одним из частных вопросов прогнозирования надежности приборов и промышленного оборудования, эксплуатируемых в различных климатических зонах. Поэтому неудивительно, что на разработку методов ускоренных коррозионных испытаний, особенно применительно к атмосферным условиям, в последнее десятилетие направлены усилия коррозионис-тов многих стран [151—154]. Однако несмотря на многообразие рекомендуемых методов, режимов и установок, лабораторные испытания, как правило, количественно не отражают коррозионного поведения металлов в натурных условиях. По этой причине ряд авторов, пытаясь связать результаты натурных и ускоренных испытаний, вводят так называемый коэффициент пересчета [124, 155—158]. Совершенно очевидно, что количество подобных коэффициентов , по крайней мере для каждой металлической системы, равно множеству существенно различающихся условий эксплуатации.  [c.197]

При исследовании коррозионного поведения металлов и сплавов в жидких средах часто возникает задача определения в растворе весьма малых количеств продуктов растворения. С такой задачей исследователь сталкивается, например, при измерении скоростей растворения коррозионно-стойких металлов и сплавов, особенно при потенциалах пассивной области или при очень отрицательных потенциалах, при исследовании кинетики начальных стадий растворения, при оценке коррозионной стойкости анодов из благородных металлов в различных условиях электролиза, при определении скорости растворения микропримесей и в ряде других случаев. Чувствительность обычных, традиционных методов, используемых при таких коррозионных испытаниях, как определение весовых потерь или колориметрическое определение продуктов коррозии в растворе, часто недостаточна для проведения соответствующих измерений. В этих случаях весьма эффективным может оказаться применение радиохимического метода, сущность которого состоит в следующем. В исследуемый образец вводятся радиоизотопы составляющих его элементов. Затем образец подвергается коррозионному испытанию,  [c.93]

В сборнике рассматриваются закономерности коррозионного поведения металлов и методы защиты их от коррозии различными покрытиями. Также расошатриваются факторы, влияюще на коррозию, механизм ингибирования, особенности электрохимического поведения сплавов титана в различных средах, принципы конструирования металлического оборудования в коррозионностойком исполнении в электрохимических производствах.  [c.2]


В объектах, работающих под землей, нержавеющие стали не нашли широкого применения, но иногда все же встречаются случаи подземной эксплуатации таких сталей. В широкой серии испытаний в различных почвах [9] исследовалось и коррозионное поведение нержавеющих сталей начиная от стали с 13% Сг и кончая молибденсодержащими аустенитными сортами. Наиболее агрессивными оказались слабо аэрированные почвы с высоким содержанием хлоридов, но даже в таких условиях аустенитные стали показали гораздо более высокую стойкость по сравнению с другими металлами, широко используемыми в незащищенном виде. Особенно интересен тот факт, что при питтинговом характере коррозии после нескольких лет работы глубина питтингов уже не увеличивается или увеличивается незначительно.  [c.35]

Важность проблемы создания и применения Н0 вых химически стойких металлических материалов в различных отраслях. нашей промышленности, особенно в химическом машиностроении, подчеркнута в Программе КПСС. За последние два десятилетия в связи с интенсификацией и разработкой новых технологических процессов, протекающих в агрессивных средах при высоких температурах и давлениях, значительно возрос интерес к использованию новых конструкционных материалов на основе тугоплавких и редких металлов, таких как титан, ниобий, ванадий, молибден. Эти металлы и их сплавы обладают весьма ценными физико-химическими и механическими свойствами, а по коррозионной стойкости во многих случаях значительно превосходят сплавы на основе железа и цветных металлов, которые являются до настоящего времени основными конструкционными материалами в химическом аппарато-строении. По сырьевьгм ресурсам и возможностям металлургической иромышленности такие металлы, как титан и ниобий (а также и другие из числа тугоплавких), могли бы уже сейчас широко использоваться в химическом машиностроении. Однако их внедрение в эту отрасль промышленности идет сравнительно медленно. Одна из причин отставания — отсутствие необходимых сведений о свойствах этих металлов и их сплавов, в особенности об их химической стойкости и характере поведения в различных агрессивных средах.  [c.65]

Для незнакомых с металловедением следует объяснить, что литой металл состоит из кристаллических зерен (кристаллитов), которые вырастают при затвердевании металла из зародышей, причем ориентация слоев атомов различна в различных зернах. Границы, отделяющие зерна, представляют собой поверх-иости, вдоль которых встречаются кристаллы, вырастающие из соседних зародышей. Получающаяся в результате форма не имеет ничего общего с кристаллической системой металла. Вблизи краев отливки, где тепло может уходить через стенки формы только в одном направлении, зериа стремятся вытянуться под прямым углом к стенкам (столбчатая структура). Между зернами часто встречаются пустоты и особенно капиллярные поры, стремящиеся вытянуться вдоль линии встречи трех зерен. Загрязнения также имеют тенденцию собираться на границах зерен, и часто изменения, которые происходят в сплавах во время отжига, начинаются на границах зерен. Эти факторы важны, так как они определяют различное поведение по отношению к коррозионным агентам границ зерен и тела самих зерен. Если металлы деформируются при низких температурах, слои кристаллов стремятся скользить один по другому вдоль плоскостей скольжения, а также по границам зерен, причем вещество дезорганизуется . При последующем отжиге начинают расти новые кристаллы из зародышей дезорганизованного вещества и иногда происходит рекристаллизация всего металла. Границы новых (вторичных) зерен обычно бывают более правильными, чем границы между прежними (первичными) зернами. Полировка образует на металлической поверхности тонкий слой подвижного металла (слой Бейльби), который первоначально рассматривали как аморфный или стеклообразный. Было много споров о природе этого слоя, но последние результа1Ы применения электронно-диффракционного метода, повидимому, подтверждают этот ранний взгляд. Дезорганизация вещества металла распространяется, однако, ниже стеклообразного слоя. Следует отличать истирание от полировки здесь слой дезорганизованного вещества менее. подвижен , но относительно более толст и, повидимому, пронизан трещинами.  [c.39]


Смотреть страницы где упоминается термин Особенности коррозионного поведения различных металлов : [c.315]    [c.87]    [c.17]    [c.92]    [c.233]    [c.485]   
Смотреть главы в:

Подземная коррозия металлов и методы борьбы с ней  -> Особенности коррозионного поведения различных металлов



ПОИСК



Коррозионное поведение

Поведени

Различные металлы



© 2025 Mash-xxl.info Реклама на сайте