Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Глобальная аппроксимация. Метод конечных элементов

Метод конечных элементов можно трактовать как метод аппроксимации непрерывной функции дискретной моделью, представляющей собой множество значений- заданной функции в некотором конечном числе точек области ее оп-редел,ения в совокупности с кусочными аппроксимациями этой функции на некотором конечном числе подобластей. Эти подобласти называются конечными элементами. К основным этапам решения задачи с применением МКЭ относятся 1) дискретизация области 2) локальная аппроксимация на отдельном элементе 3) глобальная аппроксимация кусочно-полиномиальной функцией, определенной на всей области 4) составление системы линейных алгебраических уравнений с применением метода Ритца или метода Галеркина 5) решение указанной системы относительно узловых значений 6) вычисление искомых величин в элементе. .  [c.237]


Метод сводится к следующему. Физическая область задачи делится на непересекающиеся подобласти или конечные элементы. Зависимая переменная (их может быть несколько) локально аппроксимируется функцией специального вида (например, полиномом невысокой,степени) на каждом конечном элементе и в дальнейшем глобально — во всей области. Параметры >тих аппроксимаций в дальнейшем становятся неизвестными параметрами задачи. Подстановка аппроксимаций в уравнения метода Галеркина или Ритца (или эквивалентные им, например, в уравнения начала виртуальных скоростей в механике сплошной среды) с последующей линеаризацией дает систему линейных алгебраических уравнений относительно указанных параметров, матрица которой обладает замечательным свойством—ова- является ленточной, очень удобной для решения системы-на ЭВМ.  [c.13]

Метод отображений нашел широкое применение при построении криволинейных элементов, позволйющих получить аппроксимацию тела относительно сложной формы с применением небольшого числа конечных элементов. Наряду с локальным отображением отдельного элемента на каноническую область во многих случаях удается построить глобальное отображение всей физической области на такую область — прямолинейную полосу, единичный круг, круговой цилиндр или прямоугольный параллелепипед, т. е. на область значительно более простой геометрии. Решение краевой задачи для такой области существенно упрощается.  [c.14]

По Г. И. Марчуку, изучение проекционно-сеточных методов целесообразно организовать по следующей схеме. Вначале рекомендуется- изучить основные алгоритмы проекционных методов, в частности метода Ритца и метода Галер-кина. Далее целесообразно ознакомиться с общей теорией аппроксимации с применением финитных функций — теорией сплайнов, локальной аппроксимацией в отдельных подобластях — конечных элементах. Это позволит перейти к изучению методов построения глобальных аппроксимаций — приближенных решений краевых задач. В таком пор ядке и расположен мatepиaл раздела.  [c.153]

Примечание 36.3. Изложенные в данном параграфе схемы обоснования методов БГР в задачах глобальной устойчивости пологих оболочек обобщаются и на случаи, когда аппроксимация решений производится методами конечных разностей или конечных элементов. И здесь важно выполнение двух условий 1) аппарат аппроксимации должен обеспечить приближение любого элемента из Нх, если используются схемы Папковича, или любого элемента пз Htx (соответственно Нд ), если используются схемы X. М. Муштари (соответственно В. 3. Власова) 2) определение констант аппроксимации производится на основе какого-либо вариационного принципа Лагранжа или Алумяэ.  [c.331]



Смотреть главы в:

Математическое моделирование процессов обработки металлов давлением  -> Глобальная аппроксимация. Метод конечных элементов



ПОИСК



Аппроксимация

Аппроксимация глобальная

Конечный элемент

Метод аппроксимации

Метод конечных элементов



© 2025 Mash-xxl.info Реклама на сайте