Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль работы анодной защиты

В течение года производили систематический контроль работы анодной защиты. При этом проверяли следующие параметры пределы регулирования потенциала, значение поляризующего тока и длительность его прохождения уровень гидроксиламинсульфата в сборнике.  [c.139]

Контроль работы анодной защиты  [c.169]

При анодной электрохимической защите металлов контроль потенциала защищаемой конструкции, как правило, является обязательным условием. Эффективность и надежность анодной защиты во многом зависят от способности электрода сравнения поддерживать постоянным свой собственный потенциал при любых условиях и на протяжении всего срока работы системы. Электроды сравнения для систем анодной защиты, как и любые другие электроды сравнения, должны удовлетворять следующим требованиям  [c.92]


Опыт эксплуатации анодной защиты хранилища показал, что использованная жесткая конструкция катодов затрудняет монтаж, контроль изоляции их от корпуса и ремонтные работы. Можно ограничиться несколькими (например, четырьмя) изолированными катодами.  [c.160]

Несмотря на простоту принципиальной схемы анодной защиты во многих случаях препятствием для ее широкого применения является все же конструктивное оформление. Требование безусловной надежности аппаратуры, необходимость постоянного контроля потенциала защищаемой поверхности, более тяжелые (по сравнению с катодной защитой) условия работы вспомогательных электродов и электродов сравнения, применяемых в сильноагрессивных растворах — очень часто создают значительные технические трудности.  [c.137]

Настройка системы защиты от коррозии на отдельных преобразователях часто оказывается трудоемкой и отнимает много времени. Проще применить централизованное управление, позволяющее настраивать отдельные преобразователи с центрального- пункта. На этом пункте должны иметься приборы для отсчета значений защитных токов, анодных напряжений и потенциалов для отдельных участков защиты. Станции катодной защиты с наложением тока от постороннего источника должны быть выполнены прочными и удобными в обслуживании, так чтобы контролировать их работу можно было без затруднений, по возможности с привлечением необученного персонала. При централизованной системе управления и контроля это особенно легко осуществимо.  [c.344]

В предлагаемой книге рассмотрены вопросы, связанные с разработкой научно-технических основ, проектированием и конструированием автоматических систем анодной электрохимической защиты. Большое место в книге отведено средствам регулирования и контроля потенциала, рассчитанных на длительную непрерывную работу, а также автоматическим унифицированным электронным системам защиты. Немаловажное внимание уделено подбору, конструктивному оформлению катодов и электродов сравнения. Без надежной работы этих элементов система анодной электрохимической защиты была бы неуправляемой.  [c.6]

Легирование стали значительным количеством хрома являются совершенным видом защиты в условиях, обеспечивающих устойчивое состояние пассивности (анодный контроль), но абсолютно бесполезно при работе конструкции в кислоте с неокисляющим анионом (катодный контроль).  [c.195]

Коэффициент защитного эффекта тем больше, чем больше катодная поляризуемость и чем меньше анодная поляризуемость корродирующей системы для коэффициента разностного эффекта будет действительна обратная зависимость от поляризационных характеристик. Можно, например, полагать, что если коррозионная система работает при кислородной деполяризации с диффузионным контролем (т. е. когда катодная поляризуемость велика), то электрохимическая защита будет более эффективной. Наоборот, если катодная поляризуемость мала, например в условиях коррозии с выделением водорода (при растворении в кислотах), электрохимическая защита будет малоэффективной.  [c.235]


Одновременно с контролем работы анодной защиты измеряли скорость коррозии сборников. С этой целью в каждый аппарат помещали образцы из стали 12Х18Н10Т. Для определения скорости коррозии при анодной защите ряд образцов имел электрический контакт со сборником. Образцы находились в аппарате в общей сложности 4727 ч. За это время скорость коррозии определяли четыре раза. Среднее ее значение ири анодной защите составило 0,5 мг/(м2-ч). Скорость коррозии в отсутствие анодной защиты рассчитывали по убыли массы образцов, подвешенных на тефлоновой ленте и изолированных от сборника. Скорость коррозии таких образцов равнялась в среднем 3 г/(м -ч).  [c.140]

Анодная защита установлена на трех сборниках гидроксиламинсульфата. При монтаже каждый сборник специально оборудовали люками и штуцерами для осуществления анодной защиты и контроля ее работы (рис. 8.3). Катодом служит труба из стали 06ХН28МДТ диаметром 0,05 м с приваренным с одного торца диском. Труба опущена в люк на крышке сборника и зажата между фланцами с помощью текстолитовых прокладок. Конец катода расположен ниже трубы для отбора гидроксиламинсульфата, поэтому при нормальной работе сборника катод всегда погружен в раствор, и цепь поляризующего тока не разрывается. Для полного слива гидроксиламинсульфата во время ремонта или осмотра сборник снабжен сливным вентилем, расположенным почти у самого дна.  [c.138]

В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы.  [c.71]

В связи с вводом в эксплуатацию мощных многоанодных с обожженными анодами электролизеров встал-вопрос об изучении взаимовлияния распределения токовой нагрузки по анодам и технологического состояния процесса электролиза алюминия. Работа была выполнена на ТадАЗе Казахским политехническим институтом совместно с ВАМИ. Исследования проводили на промышленных электролизерах на силу тока 162 и 167 кА с помощью 30-канальной измерительной системы К 484/2 с выводом информации на перфоратор. Измерялось падение напряжения на фиксирован ном участке анодной штанги, которое соответствует силе тока, протекающего по данному аноду. Сила тока серии и электрическое напряжение электролизера замерялись через гальванические разделители Е826 для защиты системы от попадания потенциала серии. Дискретность опрашивания входных сигналов составляла 0,1 с, и общее время измерения параметров одного электролизера -не превышало 2,5 с. Таким образом, можно считать измерение выполненным при постоянных значениях силы тока серии и рабочего напряжения ванны. Периодичность опроса определяли в зависимости от поставленной задачи. При исследовании нормального режима работы регистрацию производили через каждые 10 мин, при праведении технологических операций — непрерывно. На печать выводились единичные измерения, а также средние за определенный период времени (час, смена, сутки). Полученные на перфолентах результаты обрабатывали по. специальной программе на ЭВМ СМ-2. Для визуального контроля и изучения динамических характеристик отдельных анодов применяли самопишущие приборы типа Н-338 и КСП. Для количественной оценки равномерности токораспределения по анодам данного электролизера  [c.35]


Следует заключить, что не существует единого пути создания коррозионностойкого сплава, как не существует и металлического сплава, устойчивого в любых условиях. В зависимости от условий коррозии пути подбора и создания коррозионностойких сплавов будут весьма сильно видоизменяться. Легирование стали значительным количеством хрома (переход к хромистым сталям) является созершенным методом защиты в условиях работы сплава в пассивном состоянии (анодный контроль), но будет совершенно бесполезным при работе коя-струкдии в неокислительной кислоте (НС1, H2SO4), где протекает коррозия этих сталей с катодным контролем. Легирование титана большим количеством (до 32%) молибдена повышает устойчивость сплава в солянокислых растворах, но будет вредно, если в этих растворах присутствуют окислители и кислород наоборот, в этих средах более положительный эффект будет получен от модифицирования титана ничтожными присадками (0,2—0,5%) палладия. Может быть приведено большое число подобных примеров. Общей ориентировкой может служить такое правило. Изменение состава сплава следует производить в том направлении, чтобы в предполагаемых условиях эксплуатации достигалось дальнейшее повышение основного контролирующего фактора коррозии. Например, если основной металл в данных условиях не склонен к пассивации п корродирует в активном состоянии с выделением водорода, то следует изыскивать методы изменения состава и структуры поверхности сплава, вызывающие повышение катодного контроля, например повышение перенапряжения водорода, снижение поверхности активных катодов. Для условий, в которых возможна пассивация основы сплава, наибольший эффект будет получен от добавления в сплав присадок, повышающих пассивируемость основы или повышающих эффективность катодного процесса.  [c.21]

Легирование стали высоким процентом хрома (переход к хромистым сталям) является совершенным методом защиты в условиях, обеспечивающих устойчивое состояние пассивности (анодный контроль), но бесполезно при работе конструкции в неокислительной кислоте (НС1, H.2SO4), где протекает коррозия с катодным контролем.  [c.16]

Ряд теоретических и практических вопросов коррозии часто выясняют, исследуя работу модели коррозионного элемента. Распространению этого метода способствовали исследования Эванса, Г. В. Акимова и его школы. Модель микроэлемента представляет собой замкнутые металлическим проводником анод и катод, погруженные в коррозионную среду (рис. 225). Такая система моделирует корродирующий силав, так как коррозию силава в электролите можно упрощенно представить как работу бинарного гальванического элемента анод—катод. Приведенная на схеме установка позволяет исследовать влияние на величину тока и потенциалы электродов внешнего сопротивления пары, перемешивания раствора в анодном и катодном пространстве, различных добавок к раствору в анодном и катодном пространствах. На основании такого исследования можно сделать вывод о влиянии перечисленных факторов на поляризацию анода и катода, о степени анодного, омического и катодного контроля и контролирующем факторе коррозии. Аналогичные установки используют для исследования электрохимического иоведения разнородных металлов в контакте друг с другом, т. е. контактной коррозии и протекторной защиты. Специальные установки позволяют проводить эти опыты одновременно на большом числе гальванических пар.  [c.391]


Смотреть страницы где упоминается термин Контроль работы анодной защиты : [c.127]    [c.272]    [c.48]    [c.153]   
Смотреть главы в:

Анодная защита металлов от коррозии  -> Контроль работы анодной защиты



ПОИСК



Анодная защита

Анодный

Анодный контроль



© 2025 Mash-xxl.info Реклама на сайте