Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции, работающие на сдвиг и на кручение

Ранее рассматривались простейшие виды деформации растяжение— сжатие, сдвиг, кручение, поперечный изгиб. На практике такие простые деформации встречаются весьма редко. Как правило, на детали машин и элементы конструкций действует комбинация внешних силовых факторов, создающих несколько простых деформаций. Например, любой вал одновременно испытывает изгиб, кручение и сдвиг, даже простая деталь — болт работает на сложную деформацию на него одновременно действуют растяжение и кручение.  [c.222]


В настоящей книге рассматриваются основные принципы и методы расчета элементов конструкций на прочность, жесткость и устойчивость приводятся данные для расчета стержней на растяжение-сжатие, сдвиг, кручение, для расчета статически определимых и статически неопределимых балок и рам рассматривается работа стержней, находящихся в условиях сложного сопротивления, кривых брусьев, толстостенных труб, тонкостенных стержней, пластинок и оболочек.  [c.8]

Наибольшее распространение имеют устройства, работающие на сжатие и сдвиг реже применяются конструкции, использующие работу резины на кручение. Конструктивное оформление устройств зависит от запросов и отдельных технических условий [1].  [c.327]

Большое значение получил в последнее время расчет несущих конструкций зданий повышенной этажности как каркасных, так и панельных. Этажерка несущих конструкций многоэтажного здания может рассматриваться как составной стержень, в котором связями сдвига являются перемычки над проемами и ригели каркаса. Перекрытия при этом обеспечивают неизменяемость горизонтальных сечений здания и играют роль абсолютно жестких поперечных связей. Вся конструкция здания часто работает пространственно на изгиб в обоих направлениях и на кручение под действием бокового ветра. По схеме составного стержня могут рассчитываться также и протяженные малоэтажные здания. Стержень при этом считается лежащим на упругом основании или на отдельных фундаментных опорах, а связями сдвига будут простенки и поперечные стены. Внешним воздействием здесь обычно является неравномерная осадка здания.  [c.25]

Корневая часть стреловидного крыла может быть выполнена с переломом осей продольных силовых элементов у борта фюзеляжа или в плоскости симметрии самолета и с внутренним подкосом (при однолонжеронной конструкции). При одном лонжероне часть крыла вне указанной зоны работает на изгиб, сдвиг и кручение как прямое крыло.  [c.233]

До сих пор были рассмотрены случаи, когда элементы конструкций, подверженные действию внешних сил, испытывали только одну из простых деформаций осевое растяжение или сжатие, сдвиг, изгиб и кручение. В действительности, во многих случаях элементы конструкций при работе испытывают одновременно не одну из перечисленных деформаций, а две или больше.  [c.183]

Резиновые изделия, несущие нагрузку-Амортизаторы [11] — разнообразные конструктивные элементы — обычно состоят из металлических (плоских, трубчатых или фасонных) оснований, между которыми прочно закреплена резина. Амортизаторы применяются в качестве подвесок, опор, буферов и тому подобных деталей, поглощающих вибрации и толчки. Они используются при деформациях сдвига, кручения, сжатия и их комбинациях. Прочность крепления резины к металлу (стали, алюминию, бронзе, латуни) зависит от принятого способа крепления, состава резины и условий работы конструкции и достигает при отрыве (от стали и латуни) 40 кГ/см и выше. Модуль сдвига резины для амортизаторов 5—7 кПсм .  [c.402]


Отметим, что обычную уточненную теорию оболочек вполне можно использовать для анализа трехслойных конструкций, если иметь в виду, что их жесткость при изгибе и кручении обеспечивается несущими слоями, а сдвиг по толщине имеет место в слое (или слоях) заполнителя. Относительно небольшую нормальную деформацию заполнителя в большинстве случаев можно не учитывать. Однако этим эффектом нельзя пренебрегать при исследовании местной формы потери устойчивости (сморщивание обшивки). Так, универсальная теория, предложенная в работе Бар-телдса и Майерса [27], которая позволяет описать как местную, коротковолновую (сморщивание обшивки), так и длинноволновую (общую) формы потери устойчивости, учитывает податливость заполнителя в нормальном направлении.  [c.247]

Резиновые амортизаторы используются для уменьшения амплитуды усилий при вынужденных колебаниях циклического (периодического) или импульсного (ударного) возбуждения от стационарных недостаточно уравновешенных объектов на фундамент (активная изоляция) или для уменьшения амплитуды деформации от вибрирующего корпуса к монтированным на нем приборам (пассивная изоляция). Амортизаторы работают на сжатие, на сдвиг, на кручение или на сочетание этих видов деформаций. Амортизаторы, работающие только на растял ение, применяются редко, так как свойственная резине ползучесть под нагрузкой приводит в данном случае к значительному изменению начальных габаритов конструкции. Резина, сжимаемая между двумя металлическими плитами, проявляет различную жесткость в зависимости от наличия или отсутствия смазки и формы (вида) образца резины. На практике смазку не применяют, но резина, зажатая между двумя металлическими листами, все же имеет некоторое скольжение, и потому края ее истираются. Во избежание этого к рабочим поверхностям резины привулканпзовывают тонкие металлические листы. Такой резиновый блок используют как конструктивную деталь амортизатора (рис. 9.1). Для обеспечения достаточной осадки и должной жесткости конструкции применяют амортизаторы, составленные из нескольких, наложенных один на другой резиновых блоков.  [c.263]

Идея представления конструкций в виде набора дискретных элементов восходит к раннему периоду исследования конструкций летательных аппаратов, когда, например, крылья и фюзеляжи рассматривались как совокупности стрингеров, обшивки и работающих на сдвиг панелей. Хренников [1941] ввел метод каркасов — предшественник общих дискретных методов строительной механики — и применил его, представляя плоское упругое тело в виде набора брусьев и балок. Топологические свойства некоторых типов дискретных систем изучались Кроном [1939] ), который разработал универсальные методы анализа сложных электрических цепей и строительных конструкций. Курант [1943] дал приближенное решение задачи кручения Сен-Венана, используя кусочнолинейное представление функции искажения в каждом из треугольных элементов, совокупностью которых заменялось поперечное сечение тела, и формулируя задачу с помощью принципа минимума потенциальной энергии. Пример применения Курантом метода Ритца содержит в себе все основные моменты процедуры, известной теперь как метод конечных элементов. Аналогичные идеи использовал позже Пойа [1952]. Метод гиперокружностей , предложенный в 1947 г. Прагером и Сингом [1947] и подробно исследованный Сингом [1957] ), легко может быть приспособлен для конечноэлементных применений он проливает новый свет на приближенные методы решения некоторых краевых задач математической физики. В 1954 г. Аргирис и его сотрудники ) начали публикацию серии работ, в которых они далеко развили некоторые обобщения линейной теории конструкций и представили методы  [c.12]


Смотреть страницы где упоминается термин Конструкции, работающие на сдвиг и на кручение : [c.630]    [c.239]    [c.50]   
Смотреть главы в:

Сборник задач по сопротивлению материалов  -> Конструкции, работающие на сдвиг и на кручение



ПОИСК



Работа на кручение

Работа сдвига

Сдвиг и кручение



© 2025 Mash-xxl.info Реклама на сайте