Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Первичная и вторичная кристаллизация при сварке

В процессе первичной кристаллизации сварного шва желательно получить мелкозернистую структуру с незначительной химической неоднородностью. Металл с такой структурой обладает высокой прочностью и пластичностью. Мелкозернистое строение наплавленного металла можно получить при быстром охлаждении, т. е. при вторичной кристаллизации. Но это не всегда возможно. Быстрое охлаждение в интервале температур 200—300° С, особенно при сварке легированных сталей, может привести к частичной или полной закалке металла шва. В результате образования мартенсита, имеющего больший объем, чем перлит или феррит, в сварном шве возникают напряжения, которые могут привести к образованию трещин. Эти трещины называют холодными, так как они образуются при относительно низких температурах.  [c.243]


ПЕРВИЧНАЯ И ВТОРИЧНАЯ КРИСТАЛЛИЗАЦИЯ ПРИ СВАРКЕ  [c.98]

Известно, что при сварке обычных углеродистых и низколегированных сталей вторичная кристаллизация, т. е. появление новых структурных составляющих в результате распада аустенита в процессе охлаждения шва, затемняет первичную структуру металла щва. Нужны специальные методы травления, чтобы выявить его первичную структуру.  [c.98]

Кристаллизация металла при сварке. Различают первичную и вторичную кристаллизации. Переход металла сварочной ванны из жидкого состояния в твердое называется первичной кристаллизацией. Первичная кристаллизация металла сварочной ванны начинается от частично оплавленных зерен основного или ранее наплавленного металла и продолжается по нормали от линии расплавления (рис. 3.3).  [c.53]

Вторичная кристаллизация металла сварного шва. Процесс первичной кристаллизации заканчивается образованием столбчатых кристаллитов. При о-х, см/сек сварке сплавов на основе  [c.528]

С затвердеванием металла шва структурные превращения в нем не заканчиваются. Например при сварке стали первичные кристаллиты сразу после их образования состоят из аустенита - твердого раствора углерода и легирующих элементов в у-железе, существующего при высоких температурах (750...1500 °С ). В процессе охлаждения аустенит распадается, превращаясь в зависимости от состава стали и скорости охлаждения в другие фазы пластичный феррит, более прочный перлит и прочный, но малопластичный мартенсит. Скорость охлаждения зоны сварки обычно велика, и структурные превращения не успевают произойти до конца. Следовательно, меняя скорость охлаждения сварного соединения, подогревая или искусственно охлаждая его, можно в некоторых пределах управлять вторичной кристаллизацией металла шва и его механическими свойствами. Теплота, выделяемая источником нагрева, при сварке распространяется в основной металл. Его участки нагреваются до температуры плавления на границе сварочной ванны и имеют температуру окружающей среды вдали от нее. Это не может не сказаться на структуре металла. Зону основного металла, в которой в результате нагрева и охлаждения металла происходят изменения структуры и свойств, называют зоной термического влиянця (ЗТВ). Каждая точка в ЗТВ в зависимости от расстояния до оси шва достигает различной максимальной температуры, нагревается и охлаждается с различными скоростями. Изменение температуры данной точки во времени KdiZUbdiKiX термическш циклом. Каждая точка ЗТВ имеет при сварке свой термический цикл. Значит, металл в ЗТВ подвергается в результате сварки нескольким видам термической обработки. Поэтому в ЗТВ наблюдаются четко выраженные участки с различной структурой и свойствами.  [c.29]


Условия сварки, режим сварки, направление теплоотвода, скорость кристаллизации и охлаждения, объем сварочной ванны оказывают заметное влияние на структуру сварных швов. При сварке углеродистых и конструкционных сталей, как известно, условия сварки сказываются не столько на первичной, сколько на вторичной структуре шва. При сварке хромоникелевых аусте-нитных сталей и сплавов фазовые превращения, т. е. вторичная кристаллизация, сводятся, обычно только к выпадению избыточной фазы по границам зерен (кристаллов) аустенйта или по границам полигонизации. В то же время под влиянием изменений условий сварки первичная структура хромоникелевых сварных швов претерпевает весьма суш,ественные изменения. Большая скорость кристаллизации обусловливает развитие структурной микронеоднородности в сварном шве, а также межслойной ликвации и способствует подавлению зональной ликвации.  [c.118]

С. Это соответствует температуре 1510— 1480°С. После окончания первичной кристаллизации металл приобретает аустенитную структуру в пределах первичных столбчатых кристаллитов. При дальнейшем понижении температуры структурные изменения в стали не наблюдаются (для низкоуглеродистой стали) до 850—900 °С, после чего начинаются последующие структурные изменения, называемые вторичной кристаллизацией. В металле шва и прилегающем к нему основном металле они проходят также в небольшом температурном интервале, начиная примерно с 850— 900 С до 723 ° С, после чего сталь приобретает постоянную микроструктуру (исследованную под микроскопом). Металл шва, осбенно многослойного, характерен мелкозернистой структурой и равномерным распределением зерен феррита (Fe, содержащего не более 0,07 % С) и перлита (раствор карбида железа в Fe). Прилегающий к шву участок основного металла, не подвергавшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке или наплавке, называют зоной термического влияния при сварке. Эта зона - имеет несколько участков с различной структурой и свойствами (рис. 9.6)  [c.124]

Различают следующие типы горячих трещин кристаллизационные или ликвационные, подсолидусные и подваликовые. Кристаллизационные горячие трещины образуются при температуре, превышающей температуру солидуса. Полигонизационные трещины появляются после завершения первичной кристаллизации вследствие возникновения в структуре вторичных полигонизацион-ных границ [78]. Дефекты типа горячих трещин обнаруживаются как в металле шва, так и в металле околошовного участка ЗТВ вблизи линии сплавления. В соответствии с существующими представлениями, развитыми в работах Н. Н. Прохорова и его сотрудников, технологическая прочность в процессе кристаллизации определяется температурным интервалом хрупкости металла (ТИХ), его пластичностью б и темпом деформации в ТИХ а. Полагают, что горячая трещина образуется, если деформации растяжения развиваются в период нахождения металла в ТИХ, а скорость деформации велика. В соответствии с ГОСТ 26389—84 применяют машинные или технологические методы испытаний. Машинные основаны на высокотемпературной деформации металла при сварке до образования трещин под действием внешних сил, а технологические — на выявлении трещин, образовавшихся под действием внутренних сил от усадки шва и формоизменения элементов.  [c.124]


Смотреть главы в:

Сварка жаропрочных аустенитных сталей и сплавов  -> Первичная и вторичная кристаллизация при сварке



ПОИСК



Вторичный пар

Кристаллизация

Кристаллизация вторичная

Кристаллизация первичная



© 2025 Mash-xxl.info Реклама на сайте