Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна из карбида кремния и композиционные материалы на их основе

Титан — волокна карбида кремния. Композиционный материал на основе титанового сплава Ti—6% AI—4% V получали в вакууме 4-10 мм рт. ст. при температуре 870° С, давлении 420 кгс/см и времени выдержки 60 мин [216]. Предел прочности применяемого волокна составлял 210—280 кгс/мм . Композиционный материал, содержащий 23 об. % волокна, имел предел прочности в продольном направлении 112 кгс/мм .  [c.141]


Разработан метод получения пропиткой композиционного материала на основе алюминия, упрочненного волокном из карбида кремния [113]. Особенностью изготовления этого материала является весьма высокая температура расплава, достигающая 1050° С, необходимая для обеспечения хорошей смачиваемости волокна расплавленным металлом. В результате контактного взаимодействия волокна с [расплавленным металлом при этой температуре его прочность снижается более чем на 30% (с 350 до 220 кгс/мм ). Для снижения температуры пропитки и улучшения смачиваемости было предложено наносить на волокна карбида кремния покрытия из никеля, меди или вольфрама. Применение покрытия позволяет снизить температуру пропитки до 700° С и сократить до нескольких минут время пропитки. Изготовленный по такой технологии материал с матрицей из алюминия (предел прочности 3 кгс/мм , относительное удлинение 40%), упрочненный 15 об. % волокна с покрытием, имел предел прочности 24 кгс/мм и относительное удлинение 0,6%.  [c.97]

Динамическое горячее прессование. Этот процесс, относящийся к категории импульсных методов формирования и называемый за рубежом процессом формования с применением высоких скоростей и энергий, применялся первоначально для прецизионной ковки металлических слитков в изделия сложной формы. Изготовление композиционных материалов этим методом заключается в диффузионной сварке пакета предварительной заготовки, нагретого до необходимой температуры, в результате кратковременного приложения очень больших давлений. Динамическое горячее прессование предварительных заготовок может осуществляться на ковочных молотах и подобных им установках в специальных пресс-формах или в вакуумированных пакетах. Одна из таких установок, применявшаяся для изготовления композиционного материала на основе титанового сплава Ti—6% А —4%V, упрочненного волокном карбида кремния, описана в работе [223]. Эта пневмомеханическая установка динамического прессования, внешне похожая на молот, имеет значительно более высокий уровень энергии падающих частей. Пуансон в ней прикреплен к раме массой 1 т. Рама, выстреливаемая давлением газа, толкает пуансон в закрытую матрицу. Скорость падения пуансона составляет 132  [c.132]

Детали двигателя работают в более напряженных температурных режимах, чем элементы планера. Температура вентилятора и передних ступеней компрессора изменяется в пределах от окружающей температуры до 150° С, достигая в задней зоне компрессора 650° С. В указанном диапазоне температур возможно использование большого числа композиционных материалов как полимерных, так и металлических. По-видимому, наиболее эффективно применение композиционных материалов на основе металлических и термостойких полимерных (в частности, полиимидных) матриц, упрочняемых борными или углеродными волокнами. Было обнаружено, что наносимое на борные волокна покрытие карбида кремния исключает взаимодействие между наполнителем и алюминиевой или титановой матрицами в процессе изготовления материала. Рассматривается применение полимерных композиционных материалов (как полиимидных, так и эпоксидных) в корпусах двигателя и редуктора (коробки скоростей).  [c.55]


Никель — прочие упрочнители. Имеются сведения о получении методом диффузионной сварки под давлением композиционных материалов на основе никеля, упрочненного волокнами окиси алюминия [2151, вольфрама, (патент Франции № 2109 009, 1972 г.), нитевидными кристаллами карбида и нитрида кремния [198], Так получали композиционный материал из никелевой фольги толщиной 0,2 мм и волокна окиси алюминия диаметром  [c.143]

Горячая вытяжка. Этот метод разработан для производства прутков или трубчатых изделий из полуфабрикатов в форме проволоки [8]. Процесс вытяжки следует проводить таким образом, чтобы растягивающие напряжения были направлены в основном вдоль волокон, а изгибающие напряжения были минимальными или отсутствовали. Это дает возможность существенно уменьшить повреждения волокон и дефекты на границе раздела волокно-металлическая матрица. На рис. 7.4 показана общая схема метода горячей вытяжки стержней из композиционного материала на основе алюминия, армированного углеродными волокнами. Заготовку в виде проволоки вакуумируют в оболочке из нержавеющей стали. Вытяжку осуществляют, протягивая такую заготовку через волочильный глазок из карбида кремния, температура которого поддерживается на постоянном уровне, ниже температуры плавления металлической матрицы.  [c.247]

Волокнистые композиционные материалы. В волокнистых композиционных материалах упрочнителем служат углеродные, борные, синтетические, стеклянные и др. волокна, нитевидные кристаллы тугоплавких соединений (карбида кремния, оксида алюминия и др.) или металлическая проволока (стальная, вольфрамовая и др.). Свойства материала зависят от состава компонентов, количественного соотношения и прочности связи между ними. Для металлических композиционных материалов прочная связь между волокном и матрицей достигается благодаря их взаимодействию. Связь между компонентами в композиционных материалах на неметаллической основе осуществляется с помощью адгезии. Повышение адгезии волокон к матрице достигается их поверхностной обработкой. Производится осаждение нитевидных кристаллов на поверхность волокон. При этом получаются  [c.263]

На рис. 28.6 приведены типичные свойства композиционного материала на основе алюминиевого сплава, армированного борным волокном (с покрытием карбидом кремния).  [c.871]

Композиционный материал на алюминиевой основе ВКА-1 состоит из чередующихся слоев фольги алюминия или алюминиевых сплавов и волокон бора. Для предотвращения взаимодействия фольги с борными волокнами при нагреве в условиях длительной эксплуатации на последние наносят барьерный слой карбида кремния или нитрида бора толщиной 3—5 мкм.  [c.596]

Свинделс и Ларе [2081 использовали метод порошковой металлургии для получения композиционного материала на основе алюминиевого сплава, армированного одновременно двумя упроч-нителями — волокном типа борсик и нитевидными кристаллами карбида кремния. Введение нитевидных кристаллов, ориентированных в направлении, перпендикулярном к направлению волокон, позволило значительно повысить трансверсальную прочность и модуль упругости материала.  [c.157]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]


Композиционные материалы на основе волокон из карбида кремния и металлической матрицы. Исследования в этой области в основном посвящены композиционным материалам с алюминиевой матрицей. Это связано с тем, что волокна из карбида кремния имеют близкую к алюминию плотность (2,55 г/см ), а также с тем, что температура плавления алюминия сравнительно низка. Сочетание этих компонентов позволяет пол) ать композиционные материалы с весьма стабильными в широком температурном интервале свойствами. На рис. 8.9 показана зависимость от температуры прочности при растяжении однонаправленного материала на основе алюминия и волокон из карбида кремния, пол) енного методом пропитки волокон в расплаве. Из рисунка видно, что  [c.277]

Рис. 8.10. Усталостные характеристики при изгибе однонаправленного композиционного материала на основе алюминия и волокон из карбида кремния марки Никалон . 1 - композиционный материал А1 6061 - волокна из карбида кремния 2 - алюминий 6067 - Тб. Рис. 8.10. Усталостные характеристики при изгибе однонаправленного <a href="/info/1547">композиционного материала</a> на основе алюминия и волокон из <a href="/info/30445">карбида кремния</a> марки Никалон . 1 - <a href="/info/1547">композиционный материал</a> А1 6061 - волокна из <a href="/info/30445">карбида кремния</a> 2 - алюминий 6067 - Тб.
Другие материалы, армированные волокнами из карбида кремния. Промежуточным продуктом производства волокон из карбида кремния является поликарбосилан. Если пропитать им ткань, войлок или другой материал на основе волокон из карбида кремния и затем провести термическую обработку, то поликарбосилан превратится в карбид кремния. Можно предполагать, что, повторяя эту процедуру несколько раз, можно получить композиционный материал, матрицей в котором будет служить карбид кремния, армированный волокнами из карбида кремния. Такой метод лежит в основе многих новых перспективных технологических разработок.  [c.279]


Смотреть главы в:

Углеродные волокна  -> Волокна из карбида кремния и композиционные материалы на их основе



ПОИСК



Волокна

Волокна карбида кремния

Карбид кремния

Карбиды

Композиционные материалы

Кремний

Материалы волокнами



© 2025 Mash-xxl.info Реклама на сайте