Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры испытаний на циклические свойства материалов

Циклическое изменение температуры при постоянном напряжении оказывает также различное влияние в зависимости от свойств материала и особенностей изменения температуры. Например, на рис. 13.13 приведены результаты сравнения данных испытаний на  [c.452]

Условия нагружения элемента конструкции, как правило, могут быть реализованы в широком диапазоне варьирования температуры, частоты нагружения, асимметрии цикла путем силового воздействия на элемент конструкции по нескольким осям при разном соотношении между величинами компонент нагружения и т. д. Реальные условия многопараметрического эксплуатационного нагружения материала, воплощенного в том или ином элементе конструкции, ставят вопрос об использовании интегральной оценки роли условий нагружения в развитии процесса разрушения. В связи с этим необходимо введение представления об эквивалентном уровне напряжения для проведения расчетов с использованием новой характеристики напряженного состояния материала в виде эквивалентного КИН. Использование эквивалентной величины в свою очередь требует получения сведений о закономерностях процесса разрушения в некоторых тестовых или стандартных условиях циклического нагружения материала, в которых осуществлено построение базовой или единой кинетической кривой. Параметры кинетической кривой в стандартных условиях опыта становятся характеристиками только свойств материала. Разнообразие реальных условий нагружения материала, в том числе и влияние геометрии элемента конструкции, рассматривается в условиях подобия путем сведения всех получаемых кинетических кривых к базовой или единой кинетической кривой. Поэтому влияние того или иного параметра воздействия на кинетику усталостной трещины в измененных условиях опыта по отношению к тестовым условиям испытаний может быть учтено через некоторые константы подобия. Они выступают в качестве безразмерного множителя.  [c.190]


Рост рабочих параметров турбоагрегатов и, в первую очередь, их единичных мощностей связан с необходимостью увеличения абсолютных размеров сечений и длины несущих частей корпусов и роторов. Масса роторов турбин при различных вариантах их исполнения повышается от 30—50 до 80—150 т. При этом для цельнокованых роторов низкого давления используют уникальные слитки массой от 100 до 550 т. Такое увеличение размеров исходных заготовок и готовых роторов, вызванное рядом технологических факторов (видом заготовки — отливка или поковка, термообработкой и т. п.), может привести к повышению неоднородности механических свойств материала уменьшению пластичности на 20—50 %, ударной вязкости на 40—60 %. Для зон роторов, находящихся под действием циклических нагрузок, существенное значение имеет эффект абсолютных размеров, состоящий в уменьшении на 40—60 % пределов выносливости (при базовом числе циклов 10 —10 ) с переходом от стандартных лабораторных образцов к реальным роторам. Неблагоприятное влияние увеличения абсолютных размеров сечений подтверждается также результатами испытаний образцов на трещиностойкость. Различие в критических температурах хрупкости в центральной части поковок по сравнению с периферийной может достигать 40—60 °С абсолютные значения критических температур для сталей в ряде случаев составляют 60—80 °С, а для высокотемпературных роторов из r-Mo-V сталей 120—140 °С. Это имеет существенное значение для роторов турбин при быстрых пусках, когда температура металла ротора может оказаться ниже критической.  [c.6]

Для определения влияния внешних условий на свойства композиционных материалов используются специальные виды испытаний. Исследование зависимости свойств от экспозиции во влажной среде показывает, что на изменение характеристик материала оказывает влияние содержание связующего, ориентация волокна, геометрия образца, относительная влажность и температура. Стабильность размеров композитов также зависит от равновесных значений сорбции и десорбции влаги. Относительная влажность может воздействовать и на жесткость композитов, особенно при циклических нагрузках [2].  [c.440]

В условиях эксплуатации на материалы электрической изоляции повышенная температура воздействует в течение длительного времени, вызывая необратимые изменения свойств — тепловое старение. Органические диэлектрики, как правило, сильней подвержены тепловому старению, чем неорганические. В разных веществах, при разных температурных уровнях интенсивность термоокислительной деструкции, являющейся основным механизмом теплового старения, протекает по-разному. В первой стадии теплового старения за счет удаления остатков влаги и растворителей, улетучивания некоторых низкомолекулярных составных частей и других процессов электрические свойства твердых диэлектриков могут даже улучшаться без существенного снижения механических свойств. В дальнейшем термоокислительная деструкция, сопровождающаяся в органических диэлектриках выделением разных продуктов окисления, в том числе СО, СО2, Н2О и других продуктов иногда кислого характера с химическими агрессивными свойствами, будет вызывать прогрессивное ухудшение механических характеристик, в первую очередь тех, которые особенно чувствительны к появлению хрупкости материала падает удлинение при разрыве, число перегибов, удельная ударная вязкость, гибкость при изгибании вокруг стержней. В материале могут появляться сперва микроскопические, потом и более крупные трещины. При воздействии влаги, проникающей в эти трещины, может сильно снижаться удельное объемное сопротивление, возрастать tgб, падать электрическая прочность. Появление хрупкости особенно опасно при наличии динамических механических нагрузок, тряски, вибраций. Поэтому для выявления влияния теплового старения на электрические характеристики часто пользуются циклическими испытаниями чередующимися воздействиями на образцы высокой температуры, вибрации и влажности. При достаточно глубоком тепловом старении может произойти сильное науглероживание органического  [c.98]


Как видно из рис. 1, для материалов, не склонных к деформационному старению (сталь ТС), кривые усталости в координатах при повышении температуры испытания закономерно располагаются ниже кривой усталости для температуры 20° С (кривые 6—9). Для деформационно-стареющих сталей типа 22К (кривые 1—5 на рис. 1, а) и Х18Н10Т (рис. 1, б) расположение кривых усталости зависит от склонности материала к деформационному старению. Причем для этих сталей существует интервал интенсивного деформационного старения 600—700° С для Х18Н10Т и 200—300° С для 22К. При температуре 270° С кривая усталости мягкого нагружения стали 22К располагается выше кривой усталости, полученной при температуре 20° С. С увеличением температуры до 350° С снижается эффект деформационного старения. При температуре 150° С процессы старения протекают слабо. Вместе с тем на прочностные свойства оказывает влияние температура. В результате для стали 22К в условиях мягкого нагружения цри этой температуре наблюдается провал циклической прочности (см. рис. 1, а). В интервале интенсивного деформационного ста-  [c.16]

Для стали ТС, которая не склонна к интенсивному деформационному старению, наблюдается монотонное снижение уровня циклической прочности (так н<е, как и предела текучести) как при мягком, так и при я естком нагружениях, с увеличением температуры испытания. Несколько большее влияние последней проявляется при нагреве выше 300° С, когда материал уже начинает проявлять свои реологические свойства. Пластические свойства этой стали монотонно возрастают (в отличие от стали 22К) с ростом температуры испытания.  [c.18]

Сочетание приведенных выше свойств и особенностей деформирования при термоусталостных испытаниях сплава ЭП-693ВД обусловливает появление трещин циклического разрушения в зонах шейки , что говорит о выраженном влиянии процесса накопления односторонних деформаций и, следовательно, квази-статических повреждений на достижение предельного состояния по условию циклического разрушения. Однако при испытаниях на больших уровнях долговечности с жесткостью нагружения с <" 95 тс/см, когда эффект накопления односторонних деформаций практически отсутствует (см. рис. 1.3.6), можно ожидать возникновения термоусталостной трещины в зоне перехода от рабочей длины к конической части образца, где температура цикла соответствует минимальной пластичности и, следовательно, долговечности материала.  [c.51]

Предложенная модель разрушения конструкционных сплавов с трещиной при циклическом нагружении учитывает влияние на вязкость разрушения изменения характеристик механических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении и класса материала (циклически разу-прочняющийся, упрочняющийся, стабильный). Для количественной оценки вязкости разрушзния необходимо знать закономерности изменения параметров диаграмм циклического деформирования (ширины петли пластического гистерезиса), циклического предела пропорциональности, циклического предела текучести, показателя деформационного упрочнения (в зависимости от режимов нагружения, класса материала и условий испытаний, например температуры), которые определяются при циклическом нагружении гладких образцов.  [c.221]


Смотреть страницы где упоминается термин Влияние температуры испытаний на циклические свойства материалов : [c.171]    [c.109]   
Смотреть главы в:

Уравнение состояния при малоцикловом нагружении  -> Влияние температуры испытаний на циклические свойства материалов



ПОИСК



141 — Влияние на свойства

Влияние Влияние материа

Влияние Влияние температуры

Влияние материала

Влияние свойств материала

Влияние температуры на свойства материала

Испытание материалов

Свойства материалов

Температура испытаний

Циклические испытания

Шаг циклический

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте