Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность при неизотермическом малоцикловом и длительном циклическом нагружении

Прочность при неизотермическом малоцикловом и длительном циклическом нагружении  [c.43]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]


Возможность применения деформационно-кинетических критериев малоцикловой и длительной циклической прочности в условиях неизотермического нагружения должна быть экспериментально обоснована с учетом особенностей, сопровождающих процесс циклического нагружения при переменных температурах. Эти особенности прежде всего связаны с характером изменения во времени и с числом циклов нагружения располагаемой пластичности материала, а также односторонне накопленных и циклических необратимых деформаций.  [c.44]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

За характерный период эксплуатации в опасных зонах конструктивного элемента возникают различные виды повреждений малоцикловое усталостное (длительное малоцикловое усталостное) и квазистатическое (длительное статическое), причем длительное малоцикловое усталостное и длительное статическое повреждения обусловливаются проявлением временных эффектов — ползучестью, релаксацией напряжений, деформационным охрупчиванием материалов и т. п. Предельное состояние по условиям прочности и малоцикловое разрушение материала определяются взаимосвязью и преимущественным влиянием того или иного вида повреждения в зависимости от удельного веса соответствующих этапов в режиме эксплуатации. В основном при циклическом неизотермическом высокотемпературном нагружении реализуется смешанный характер разрушения, когда основные виды малоциклового повреждения (усталостное и квазистатическое) сопоставимы.  [c.44]

Функции, отражающие длительность циклического деформирования, можно выразить в известной форме [26] а Т, t) а я ](7, t) где (С, т) и ( [зо, h) —параметры кривых длитель-]юй прочности и пластичности соответственно. Выражая время циклического деформирования через характеристики процесса малоциклового нагружения 1 = получаем уравнение кривой малоцикловой прочности, отражающей специфические особенности неизотермической малоцикловой усталости  [c.70]


Прочность яри неизотермическом малоцикловом нагружении. Характерной особенностью термомеханической нагруженности элементов конструкций является, как указывалось в гл. 1, такое сочетание режимов циклического нагружения и нагрева, когда циклы нагрузки и температуры чередуются с выдержками различной длительности.  [c.81]

Значения tfi и Nfi определяют для данных условий малоциклового нагружения заранее в простых опытах на длительную прочность (рис, 2.30, а) и неизотермическую малоцикловую усталость без выдержки (рис. 2,30, б). В последнем случае необходимо обеспечить сочетание циклов нагрева и нагружения, соответствующее исследуемому рел иму термомеханического нагружения. Ввиду высокой трудоемкости испытаний на малоцикловую усталость с независимыми циклическим нагревом и нагружением, в большинстве случаев используют в качестве базовых испытания на термоусталость без выдержки, когда временные эффекты заметно не проявляются. В условиях термоусталостного нагружения по программам (см. рис. 2.30) вычисление значений указанных типов повреждений может быть заменено суммированием  [c.86]

Для оценки неизотермической малоцикловой прочности при различных сочетаниях режимов нагрева и нагружения необходимы информация о кинетике параметров процесса циклического упруго-пластического деформирования в опасной зоне конструктивного элемента, об изменении полной (или необратимой) деформации, о накопленной деформации с числом циклов нагружения, а также кривая малоцикловой усталости, соответствующая режиму нагру-л ения и нагрева. Кривые малоцикловой усталости следует получать при длительном изотермическом и неизотермическом малоцикловом жестком нагружении с учетом температур (рис. 3.1, а), частоты (времени) деформирования (рис. 3.1, б), а также цикличности температуры (рис. 3.2). В случае режимов, обладающих максимальным повреждающим эффектом, кривые I, II (рис. 3.2) жесткого режима деформирования смещаются в область меньшего числа циклов до разрушения (появления трещины). Кроме того, требуется информация о располагаемой пластичности материала при монотонном растяжении (рис. 3.3, режимы а, б) с учетом скорости  [c.125]

J. Испытания на длительную циклическую прочность проводят по ГОСТ 25.505 — 85 Расчеты и испытания на прочность. Методы механических испытаний металлов. Испытания при малоцикловом неизотермическом и термоусталостном нагружениях на базе 2 10" ч при температуре, вызывающей наибольшее снижение длительной пластичности исследуемого материала. Характеристики длительной прочности и пластичности определяют в соответствии с требованиями разд. 4 настоящего приложения.  [c.213]

Оценка долговечности и запасы прочности. На основе данных о режимах нагружения и нагрева определяют циклические и односторонне накопленные деформации в максимально напряженных зонах элементов конструкций, лимитирующих сопротивление длительному малоцикловому и неизотермическому нагружению. Деформации устанавливаются экспериментально или в результате решения соответствующей задачи применительно к эксплуатационным условиям рассчитываемой на прочность конструкции.  [c.189]

Усиление циклической нестабильности материалов и особенно повышение температур до уровней, связанных с возникновением деформаций ползучести, делают крайне затруднительным поцикловой анализ напряженно-деформированных состояний и накопленных повреждений. Если при этом имеют место нестационарные неизотермические режимы нагружения, то поцикловый расчет даже с применением современных программ метода конечных элементов и мощных ЭВМ не дает конечного результата в оценке прочности при малоцикловом и длительном циклическом нагружении.  [c.214]

Необходимость исследования закономерностей сопротивления циклического деформирования материалов в условиях малоциклового, длительного циклического и неизотермического нагружений определяется, как было рассмотрено выше (см. гл. 1), прежде всего потребностями разработки экспериментально обоснованных уравнений состояния, позволяющих определять поцикловое напряженно-деформированное СОСТОЯ , ие и анализировать кинетику деформаций в наиболее напряженных зонах (амплитуды местных упругопластических деформаций и величины односторонне накопленных пластических деформаций). Это в свою очередь позволяет рассмотреть процесс накопления циклических повреждений с целью расчетной оценки прочности и долговечности элементов конструкций.  [c.25]


Сопротивление малоцикловой прочности, как известно [1, 2, 41, коррелирует с характеристиками пластичности. Применительно к условиям неизотермического нагружения существенно также, что материал подвергается действию всего диапазона переменных температур в каждом цикле нагружения, а пластичность конструкционных материалов в диапазоне реальных температур цикла нагрева, как правило, довольно не постоянна [1,41, и для многих из них наблюдается провал пластичности , как это, например, следует из рис. 2, а для жаропрочного сплава ЭП-693Д. Следует отметить также, что располагаемая пластичность многих высоколегированных стареющих конструкционных сталей и сплавов связана с эффектом охрупчивания и в связи с этим определяется временем циклического деформирования и длительностью пребывания материала при высоких температурах.  [c.37]

При оценке прочности и ресурса элементов конструкций, работающих в условиях малоциклового нагружения при переменных температурах и сложнонапряженном состоянии, возникают две связанные задачи определение напряженно-деформированного состояния элементов конструкций при работе материала максимально нагруженных зон за пределами упругости, когда развиты упру-гонластические деформации и деформации ползучести, и на базе полученной информации оценка запасов прочности и долговечности при малоцикловом неизотермическом нагружении. Характер протекания процесса деформирования за пределами упругости и циклические деформации, определяющие формирование предельного состояния материала, зависят от режима термосилового воздействия на деталь и параметров термомеханической нагруженности максимальная температура, градиент температур, длительность и форма термического и силового циклов нагружения и др.), а также сочетания нестационарных режимов нагружения в период эксплуатации изделия.  [c.11]

Вместе с тем внедрение в инженерную практику разработанной, концепции расчета длительной малоцикловой и неизотермической прочности элементов конструкций должно сопровождаться широкой апробацией метода на термически и механически высоконагру-женных изделиях, какими являются, например, газотурбинные установки различного назначения, энергетические и химические установки, металлургическое и другое оборудование. При этом необходимо располагать информацией о значениях циклических деформаций в максимально нагруженных зонах конструкций, а также соответствующими расчетными характеристиками.  [c.230]


Смотреть главы в:

Прочность при изотермическом и неизотермическом малоцикловом нагружении  -> Прочность при неизотермическом малоцикловом и длительном циклическом нагружении



ПОИСК



Длительная циклическая прочность

Нагружение длительное

Нагружение малоцикловое

Нагружение циклическое

Прочность длительная

Прочность длительная малоцикловая

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте