Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стеклянные конденсаторы

Влияние излучения на стеклянные конденсаторы  [c.364]

Остальные сведения о влиянии излучения па стеклянные конденсаторы приведены в табл. 7.6. Хотя условия облучения и времена выдержек в опытах были различными, все же некоторую пользу из приведенных сведений можно извлечь.  [c.366]

Для качественной оценки влияния очистки дымовых газов от основной массы золы на размеры, природу и температуру образования отложений были проведены опыты на установке, схема которой изображена на фигуре. Установка состоит из трех стеклянных конденсаторов-холодильников, расположенных последователь-  [c.95]


Стекла применяют для изготовления стеклянных конденсаторов, небольших проходных изоляторов, диэлектрических подложек для тонкопленочных микросхем и других радиодеталей.  [c.69]

Угол потерь может быть снижен применением стекол специального состава, но при этом возрастает стоимость. Недостатком стеклянных конденсаторов является хрупкость.  [c.101]

Рис. 116. Схема установки с ОКГ 1 — кристалл рубина 2 и 3 — зеркала резонатора ОКГ 4 — импульсная лампа 5 — батарея конденсаторов 6 — металлический цилиндр 7 — насыщающийся фильтр 8, 9 — делительные стеклянные пластинки 10 — термоэлемент 11 — гальванометр 12 — фотоэлемент 13 — осциллограф 14 — белый экран 15 — ослабляющий светофильтр 16 — камера для фотографирования /7 —кассета с фотопластинкой Рис. 116. Схема установки с ОКГ 1 — кристалл рубина 2 и 3 — зеркала резонатора ОКГ 4 — <a href="/info/115203">импульсная лампа</a> 5 — батарея конденсаторов 6 — металлический цилиндр 7 — насыщающийся фильтр 8, 9 — делительные стеклянные пластинки 10 — термоэлемент 11 — гальванометр 12 — фотоэлемент 13 — осциллограф 14 — белый экран 15 — ослабляющий светофильтр 16 — камера для фотографирования /7 —кассета с фотопластинкой
Принципиальная схема отбора пробы газов по методу селективной конденсации показана на рис. 31. Дымовые газы прокачиваются через стеклянный змеевик-конденсатор, в котором при температуре стенки 60-90 "С происходит конденсация 112804. Образующийся туман серной кислоты задерживается пористым фильтром. Далее газы освобождаются от паров воды и сбрасываются из системы. В схеме предусмотренно измерение расхода сухого газа и его температуры. Термостатирование стенки змеевика осуществляется предварительно нагретой до кипения водой. При использовании газозаборных трубок необходимо предусмотреть их обогрев для исключения конденсации кислоты в газовом тракте до прибора.  [c.91]

Вклад тепловых нейтронов в снижение сопротивления изоляции должен учитываться в электролитических конденсаторах, содержащих бор в электролите. Сопротивление изоляции с увеличением температуры снижается, поэтому любое повышение температуры, связанное с облучением, будет вносить вклад в снижение сопротивления изоляции, которое, в свою очередь, приводит к увеличению коэффициента рассеяния. Слюдяные, стеклянные и керамические конденсаторы обладают высоким сопротивлением изоляции и низким коэффициентом рассеяния, тогда как электролитические и некоторые бумажные конденсаторы имеют низкое сопротивление изоляции и высокий коэффициент рассеяния.  [c.363]


Рис. 7.12 позволяет сравнить влияние излучения на стеклянные и стекло-эмалевые конденсаторы.  [c.366]

Изучение радиационных эффектов в бумажных конденсаторах с масляной пропиткой и без нее показало, что они на 2—3 порядка более чувствительны к излучению, чем конденсаторы неорганического типа (керамические, стеклянные, слюдяные). Простая бумага является более хорошим диэлектриком, чем бумага с масляной пропиткой, так как масло под действием излучения выделяет газы, которые могут привести к повышению давления, к искажению элементов конденсатора. Примеры таких нарушений показаны на рис. 7.15.  [c.375]

Газоразрядные счетчики (рис. 69) по своему устройству являются своеобразными конденсаторами цилиндрической формы. Внутренним электродом-анодом в счетчике является вольфрамовая (железная илн молибденовая) нить /, натянутая в центре вдоль оси внешнего электрода-катода 2. Катод представляет собой стеклянный цилиндрический баллон, покрытый с внутренней стороны проводящим слоем или содержащий тонкостенный металлический цилиндр.  [c.118]

Для идеального конденсатора разность фаз (сдвиг) тока и напряжения у обкладок равна 90°. Стекло не является идеальным диэлектриком, разность фаз для конденсатора со стеклянной пластинкой отличается от 9ч° на угол 5, называемый углом диэлектрической потери.  [c.380]

Существенное значение для обеспечения надежной работы конденсатора имело уплотнение мест сочленения стеклянного кожуха с металлом. Такое уплотнение было обеспечено специально подобранной термостойкой замазкой.  [c.160]

Рис. 5. Фотография опытного конденсатора со стеклянным кожухом. Рис. 5. Фотография опытного конденсатора со стеклянным кожухом.
Проведенные на конденсаторе со стеклянным кожухом визуальные наблюдения за состоянием поверхности теплообмена при  [c.175]

Оптическая схема делительной головки приведена на рис. 46, б. От источника света — лампочки / через линзы конденсатора 2 и призму 3 пучок проходит через стеклянный градуированный диск 4, преломляющую призму 5, линзы объектива 6, преломляющую линзу 8, дугу 10, проекционные линзы И и затем попадает на зеркало 12. В системе оптического отсчета смонтирован узел микрометрического оптического устройства, состоящего из стеклянной дуги 10 с делениями от О до 2 и соединенного при помощи пластинки 9 с преломляющей линзой 8. Дуга и линза могут одновременно поворачиваться на осях 7. Назначение преломляющей линзы — создание смещения светового луча, проходящего через стеклянную минутную дугу /0. Отраженный свет от зеркала направляется на зеркало 13, вследствие чего изображение с делениями в градусах с градуированного диска 14 проецируется в зоне А, а значения минут оптической микрометрической дуги — в зоне В, Отсчет делений при измерении производится следующим образом.  [c.103]

Пучок света от источника 19 через систему линз конденсатора 20 и призму 21 направляется на градуированное кольцо 15, затем изображение проецируется на стеклянный экран 26, проходя через линзы объектива 22 и систему призм 24, 25.  [c.105]

По окончании дистилляции и расхолаживания камеры пробоотборник разбирают. Стаканчик помещают в закрывающийся стеклянный сосуд (эксикатор) и подвергают химическому анализу. Конденсат перед промывкой полезно взвесить, чтобы проконтролировать массу пробы. Для уничтожения металла в конденсаторе на стенде должно быть предусмотрено специальное место, либо камеру с конденсатором отправляют на специальную промывочную площадку. Поскольку полный цикл измерения концентрации примесей занимает весьма продолжительное время (5—8 ч), разработаны конструкции пробоотборников на  [c.184]

Однако и Пб и П в еще большие группы причин, которые следует разделить. Выполняется это так к входной и выходной трубе или к соответствующим камерам конденсатора, используя имеющиеся штуцеры, краны или пробки, подключают обычный дифманометр, заполненный ртутью (двухтрубный, стеклянный, типа ДТ-50). Измеряют сопротивление конденсатора по водяной стороне. Если гидравлическое сопротивление конденсатора больше определенного при нормальной работе или приведенного в паспорте конденсатора, то давление на напорном патрубке циркуляционных насосов выше нормального, ток нагрузки на моторах насосов меньше номинального, следовательно, подтверждена причина Пб-1 — нехватка циркуляционной воды вызвана увеличенным сопротивлением конденсатора. Это может быть при попадании щепы, тряпок, гальки и даже рыбы в приемную камеру циркуляционной воды и в трубки первого хода конденсатора.  [c.213]


Для визуальных наблюдений за процессом конденсации ртутного пара служил конденсатор-испаритель (фиг. 130), состоящий из стеклянного кожуха и помещенной внутри его стальной трубки. Кожух выполнен из стекла пирекс. Ртутный пар подводился в кожух через верхнюю крышку и конденсировался на стальной трубке, охлаждавшейся изнутри водой. Опыты велись с трубками, имеющими полированную и шероховатую наружную поверхность.  [c.132]

Фиг. 130. Экспериментальный конденсатор ртутного пара со стеклянным кожухом. Фиг. 130. Экспериментальный конденсатор ртутного пара со стеклянным кожухом.
Конструкция стеклянного конденсатора представляет собой чередую-ш,иеся слои стеклянной ленты и материала электрода. Эти слои соединяются в монолитный блок с помош ью высокой температуры и давления. Стеклоэмалевые конденсаторы имеют такую же конструкцию — чередуюш иеся слои керамической глазури и серебра, сплавленные в монолитный блок.  [c.363]

В работе [1 ] четыре стеклянных конденсатора емкостью 0,02 мкф и рабочим напряжением 200 в облучали в реакторе (мош ность 16,5 Мет) в течение 12 дней потоками тепловых нейтронов 7,8-10 нейтронI см сек), быстрых 2,5-10 нейтрон I см сек) при мощности дозы уоблучения  [c.363]

Для определения работоспособности стеклянных конденсаторов в комбинированных условиях в работе [16] шесть конденсаторов облучали в реакторе (мощность 3,5 Мет) при температуре 300° С потоками тепловых нейтронов 9-10 нейтронI см сек) и быстрых 9-10 нейтрон 1(см -сек) мощность дозы Y-облучения составляла 2-10 эрг г-сек). В этой работе использовали конденсаторы емкостью 0,001 и 0,01 мкф и максималь-  [c.363]

Конденсаторы из обычного стекла нашли применение только в отдельных специальных случаях техники. Известно, что разработаны способы получения очень тонких стеклянных пленок, которые используют в производстве конденсаторов. Секции стеклянных конденсаторов набирают из чередующихся слоев стеклянной ленты в виде тонкой пленки толщиной 12,7—25 мк и алюминиевой фольги и спекают в монолитный блок. Диэлектрическая проницаемость стекла выще, чем у слюды, поэтому объем стеклопленочных конденсаторов меньше объема слюдяных той же емкости. Стеклянные конденсаторы имеют положительный температурный коэффициент порядка 140 10 град- . Так как корпус конденсатора изготовляется из стекла, то подобные конденсаторы имеют высокое значение добротности при малых емкостях. Малая индуктивность выводов, непосредственно присоединенных к обкладкам, дает высокое значение добротности и при больших емкостях. Добротность их не ниже следующих значений  [c.364]

Доза порядка lOi Р может вызвать механическое разрушение стекол. Стеклянные конденсаторы, облученные Ю нейтр/см , не изменяют емкости и tg 6. Однако р пайрекса, свинцового и боросиликатного стекол при lOi нейтр/см снижается на порядок. Боросиликатное стекло при Ю нейтр/см снижает р на  [c.478]

Высокочастотные конденсаторы имеют малые паразитную индуктивность и потери в диэлектрике. К ним относят керамические, слюдяные, стеклоэмалевые, стеклокерамические и стеклянные конденсаторы. Они обладают высокой стабильностью (порядка 10 1/°С), высокой точностью (до 2%), малыми габаритами и массами, достаточной тем-пературостойкостью.  [c.159]

Стеклянные конденсаторы являются первым типом конденсатора, появившимся в середине XVIII в.  [c.101]

М. В. Ломоносов и Г. Рихман использовали эти конденсаторы для исследования атмосферного электричества в 1752 г. Широко применявшиеся ранее стеклянные конденсаторы были вытеснены из высокочастотной техники слюдяными и из техники высоких напряжений — бумажно-масляными. Высокая Епр стекла снова привлекла к нему внимание для изготовления конденсаторов с высоким Upas при малых значениях С , постоянном напряжении и частоте 50 гц. Опытные конденсаторы, разработанные в Ленинградском электротехническом институте имени В. И. Ульянова (Ленина) под руководством Н. П. Богородицкого, показаны на фиг. 22-6.  [c.101]

В опытах Лукирского и Прилежаева вместо плоского конденсатора, которым пользовались все экспериментаторы, начиная со Столетова, был применен сферический конденсатор (рис. 26.5). Стеклянный щар А, посеребренный изнутри, служит внещним электродом сферического конденсатора. Внутренним электродом является неболь-щого размера щарик К, изготовленный из исследуемого металла. Этот щарик освещается через кварцевое окощ-ко О. Внутри сферического конденсатора создается достаточно высокий вакуум. Шарик К соединен с квадрантным электрометром Э. С помощью потенциометра П между щариком К и сферой А создается разность потенциалов разных величины и знака, измеряемая вольтметром В. Благодаря тому, что электрод А со всех сторон окружает шарик К, фотоэлектроны движутся практически вдоль линий поля по радиусам.  [c.160]

При непрерывно-последовательном способе производства труб иа вращающийся дорн равномерно укладываются стеклянные нити, смоченные полиэфирной смолой. К моменту схода с дорна труба должна иметь достаточную механическую прочность. Так как стенка трубы равномерно пропитана связующим, то процесс отверждения можно проводить быстро. Высокочастотный нагрев позволяет это сделать за время пребывания трубы на дорие. Для труб диаметром 90 -150 мм н толщиной стенки до 5 мм время отверждения. 35 е. Рабочий конденсатор состоит из двух полос, поверхности которых параллельны поверхности трубы. Металлический дорн попадает внутрь конденсатора и является эквипотенциальной поверхностью [10].  [c.299]

Для регистрации утечек электроотрицательных пробных веществ в атмосферу, в частности утечек элегаза, может быть применен течеискатель, называемый плазменным и реагиру-. ющий на пробные вещества изменением частоты срыва высокочастотного генератора [9. Через стеклянную трубку-натекатель, находящуюся в поле плоского конденсатора, при помощи механического вакуумного насоса прокачивается с определенной скоростью воздух, отбираемый от испытуемой поверхности, так что в трубке поддерживается давление 10. .. 30 Па. Высокочастотный генератор ионизирует газ внутри трубки. Возникает тлеющий разряд, демпфирующий контур и срывающий высокочастотную генерацию. Происходит рекомбинация ионов, повышающая добротность контура. Генератор вновь возбуждается и процесс повторяется с определенной частотой. Появление в трубке электроотрицательного вещества изменяет скорость рекомбинации ионов, частота срывов возрастает пропорционально концентрации примеси.  [c.195]


Стеклянные и стекло-эмалевые конденсаторы применяют в схемах блокировки, связи, настройки и т. д., за исключением тех случаев, когда температурный коэффициент и диэлектрические потери на звуковых и радиочастотах являются критическими [28]. Эти конденсаторы показали самое высокое сопротивление по отношению к радиационным нарушениям. В опытах, которые проводили при интегральном потоке быстрых нейтронов 2,5-10 нейтрон1см и дозе у-облучения 6,1 эрг/г, емкость изменилась не более чем на 2%, а сопротивление изоляции снизилось на 2—3 порядка.  [c.363]

Рис. 7.12. Влияние облучения быстрыми нейтронами на стеклянные (а) и стекло-эмалевые (б) конденсаторы. Для обратимых изменений (заштрихованная область) приведены значения потоков быстрых нейтронов [нейтронКсм -сек)], для необратимых (зачерненная область) — значения интегральных потоков быстрых нейтронов (нейтрон1см ). Рис. 7.12. Влияние облучения <a href="/info/54451">быстрыми нейтронами</a> на стеклянные (а) и стекло-эмалевые (б) конденсаторы. Для обратимых изменений (заштрихованная область) приведены значения потоков <a href="/info/54451">быстрых нейтронов</a> [нейтронКсм -сек)], для необратимых (зачерненная область) — значения интегральных потоков <a href="/info/54451">быстрых нейтронов</a> (нейтрон1см ).
Методом вжигания изготовляются токопроводящие дорожки на керамических и стеклянных платах полупроводиковых приборов и НС, рисунки печатных плат, обкладки керамических конденсаторов, плоские катушки индуктивности, различные крепежные покрытия,  [c.72]

Фиг. 20. Домашний холодильный шкаф, i — ледогенератор 2 — отделение для замороженных продуктов 3 — отделение с повышенной влажностью 4 — ящик для овощей S стеклянная полка 6 — испарительный змеевик пторичного агента 7 — конденсатор вторичного агента. Фиг. 20. <a href="/info/457836">Домашний холодильный шкаф</a>, i — ледогенератор 2 — отделение для замороженных продуктов 3 — отделение с <a href="/info/183339">повышенной влажностью</a> 4 — ящик для овощей S стеклянная полка 6 — испарительный змеевик пторичного агента 7 — <a href="/info/195086">конденсатор вторичного</a> агента.
На сечении А—А (вид К) показано устройство оптической схемы дюйного отсчета. Свет от лампы накаливания проходит через линзы конденсаторов 23, призмы и стеклянный делительный диск 5 с двойными штрихами делений окружности, расстояние между которыми равно 20. Измененное призмами и усиленное объективами 25 изображение диаметральных делений (например, 120 и 240°), проходя двойную призму 5/ и промежуточные объективы 24, дает резкое изображение деления на шкале 26 окуляра 13. По направлению лучей изображение проходит через плоскопараллельные плитки 30, поюрот которых производится эксцентриковой втулкой 27 через поводок 28 и рычаг 29.  [c.98]

Схема Р. о., в к-ром был обнаружен ток связанных зарядов (1), такова. Круглый диэлектрик, диск (эбонитовый или стеклянный) вращается вокруг своей оси между обкладками плоского дискообразного соосного конденсатора. Если конденсатор заряжен, то в нём появляется электрич. поле, поляризующее диэлектрик. На поверхностях диска, обращённых к обкладкам конденсатора, появляются связанные заряды с поверхностной плотностью Ясвяз = (8 " 1)/4я . При вращении диска вокруг его оси эти связанные заряды создают ток, Появление к-рого обнаруживается по отклонению чувствительной магн, стрелки, помещённой вблизи прибора. При изменении знака напряжения на обкладках конденсатора (при этом меняется знак связанного заряда) или ври изменении направления вращения диска ток связанных зарядов, а следовательно, и отклонение магн. стрелки меняются на обратные. Ввиду малости величины этого тока, пропорционального величине и/с, точные количеств, измерения Рентген осуществить не смог. Впоследствии их выполнил А, Эйхенвальд (см. Эйхенвальда опыт).  [c.340]

Схема опреснителя системы Джинингса [2, 3] приведена на рис. 7.8. Лучи солнца проходят через стеклянную крышу и теплоизолирующую воздушную прослойку, поглощаются черной поверхностью хорошо теплопроводного паронепроницаемого материала /, к которому снизу приклеен слой влагоемкого губчатого материала 2, смоченного соленой водой. Тепло солнца, поглощенное верхним черным слоем, передается соленой воде, которая частично испаряется. Пары воды конденсируются на пористом конденсаторе 3, охлаждаемом соленой водой, которая насыщает губчатый слой, отделенный от пористого конденсатора 3 алюминиевой фольгой 4. Охлаждающая вода, насыщающая губчатый слой 5, нагревается за счет тепла конденсации и частично испаряется. Образовавшиеся пары конденсируются на пористом конденсаторе, расположенном ниже, и т. д.  [c.96]


Смотреть страницы где упоминается термин Стеклянные конденсаторы : [c.363]    [c.363]    [c.141]    [c.160]    [c.148]    [c.242]    [c.58]    [c.161]    [c.256]    [c.152]    [c.241]   
Смотреть главы в:

Влияние облучения на материалы и элементы электронных схем  -> Стеклянные конденсаторы



ПОИСК



Конденсатор

Стеклянные и стеклопленочные конденсаторы



© 2025 Mash-xxl.info Реклама на сайте