Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача при кипении жидкости внутри труб

Теплоотдача при кипении жидкости внутри труб  [c.363]

ТЕПЛООТДАЧА ПРИ КИПЕНИИ ЖИДКОСТИ ВНУТРИ ТРУБ И КАНАЛОВ  [c.249]

Пусть парообразование в трубе происходит в условиях развитого пузырькового кипения (жидкость смачивает стенку). Тогда изменение в некотором диапазоне скорости движения, как известно (см., например, [Л. 441), слабо сказывается на интенсивности теплообмена, так как в этих условиях изменение турбулентности потока мало влияет на возмущения пристеночного слоя, вызываемые энергичным образованием и отрывом пузырьков пара. Коэффициент теплоотдачи при пузырьковом кипении в большом объеме, а также при движении внутри трубы в условиях естественной циркуляции может быть представлен зависимостью вида л = Aq1 [Л. 26]. Имея в виду сказанное выше о режиме кипения, воспользуемся этой формулой для рассматриваемого случая. Связь между элементарным количеством тепла dq и параметрами среды выразим через соотношение (1-5 )  [c.210]


Принято [Л. 5] различать следующие условия процесса теплоотдачи при кипении кипение в большом объеме при свободном движении жидкости, кипение в большом объеме при вынужденном движении и кипение внутри труб.  [c.94]

Исследование теплоотдачи по методу конденсации. На рис. 4-15 представлена схема опытной установки для исследования теплоотдачи при кипении воды внутри труб в условиях естественной и принудительной циркуляции [Л. 8, 9]. В качестве рабочей жидкости применяется дистиллированная вода и др. Опытная труба 3 выполняется из стали с обычным для технических труб состоянием поверхности и обогревается конденсирующимся паром. Рабочая жидкость подается в рабочую трубу снизу через коллектор 10 подогреват еля жидкости с помощью центробежного насоса 12. Вторичный пар поступает в конденсатор или в атмосферу через барабан-сепаратор 1, присоединенный к верхней части опытной трубы. Сепаратор с помощью циркуляционной трубы 7 соединяется с нижним коллектором опытной трубы, образуя таким образом циркуляционный контур. В нижней части циркуляционной трубы предусмотрено байпасное устройство 13] оно позволяет отключать циркуляционный насос и и переходить на работу при режимах с естественной циркуляцией. Греющий пар предварительно подогревается на 10—15° С с помощью электрического подогревателя 8, а затем поступает в греющую камеру 2 опытной трубы одновременно через семь патрубков от общего паропровода 6. За счет теплообмена с по-17 в. А. Осипова. 257  [c.257]

При вынужденной конвекции, кроме указанных факторов, на теплоотдачу оказывает влияние еще величина скорости принудительной циркуляции жидкости. При наличии вынужденного движения двухфазного потока на возмущения пограничного слоя, обусловленные парообразованием, накладываются дополнительные возмущения за счет турбулентных пульсаций скорости. Принудительная циркуляция оказывает непосредственное воздействие также на механизм процесса парообразования. Это воздействие выражается в искажении естественного угла смачивания 0киш срыве паровых пузырьков со стенки раньше, чем они достигнут величины отрывного диаметра, характерного для кипения при свободном движении. Влияние скорости циркуляции на теплоотдачу при кипении внутри труб (рис. 13-7) различно в зависимости от величины теплового потока Л. 236]. При малых скоростях циркуляции гидродинамическое воздействие на процесс кипения невелико. 296  [c.296]


Наиболее эффективным и надежным способом интенсификации теплообмена при кипении является применение пористых металлических покрытий. При этом пористая структура образуется либо в результате покрытия поверхности трубы тонкими металлическими сетками, либо нанесением на нее металлического порошка определенной зернистости. При этом образуется пористый слой с разветвленной системой сообщающихся между собой капиллярных каналов, через которые происходят эвакуация пара и подпитка пористой структуры жидкостью, подтекающей сюда под действием сил поверхностного натяжения. Кипение происходит как внутри пористого покрытия, так и на его поверхности. Высокая ннтен-сивность теплообмена свидетельствует о том, что пористая структура создает весьма благоприятные условия для зарождения и роста паровых пузырей. Например, авторы работы [137] указывают, что при кипении н-бутана (р= 1,27-10 Па) на гладкой трубе образование паровых пузырей по всей ее поверхности наблюдалось только при = 35 кВт/м2, а дд трубе с пористым покрытием вся поверхность трубы была занята паровыми пузырями уже при 7=1,5 кВт/м . Эти и многие другие опыты показали, что устойчивое развитое кипение на поверхностях с пористыми покрытиями устанавливается при весьма незначительных температурных напорах (перегревах жидкости). Основной причиной этого является то, что в данном случае поверхности раздела фаз возникают внутри пористого слоя [54, 130, 146]. При выбросе паровой фазы из пористой структуры в последней всегда остаются паровые включения, в которые испаряется тонкая пленка жидкости, обволакивающая стенки капиллярных каналов [54, 130]. В соответствии с моделью автора [14G] испарение микропленки происходит по всей поверхности капиллярного канала, высота которого равна толщине пористого покрытия. Таким образом, элементы пористой структуры сами являются центрами зарождения паровой фазы. Так как диаметр капиллярных каналов (10- —10 м) больше критического диаметра обычного центра парообразования, то испарение пленки в паровые включения или с поверхности капилляра требует значительно меньшего перегрева жидкости. Не менее важное значение имеет и то, что в пористой структуре перегрев поступающей в капилляры жидкости происходит в условиях весьма высокой интенсивности теплообмена. Действительно, при таких малых диаметрах капилляров движение жидкости в них всегда ламинарное. В этом случае значение коэффициента теплоотдачи определяется из условия (ас ) Д = 3,65. При диаметре капилляров 10- —10 м значение а получается равным 5-103—5-Ю Вт/(м2-К). В условиях сильно развитой поверхности пористого слоя только за счет подогрева жидкости можно отводить от стенки весьма большие тепловые потоки. Снижение необходимого перегрева, а также интенсивный подогрев жидкости существенно уменьшают время молчания центров парообразования, что также способствует интенсификации теплообмена на трубах с пористыми структурами.  [c.219]

На рис. 4-10 представлена зависимость теплоотдачи от массового паросодержания при движении потока внутри вертикальной трубы снизу вверх [Л. 1]. В этой зависимости можно выделить три основные области различные по теплоотдаче область 1 подогрева жидкости, испарительный участок 2 (область кипения) и область 3 подсыхания (х5 0,3).  [c.251]

В этом параграфе мы рассмотрим несколько типовых случаев теплообмена между твердой стенкой и движущейся жидкостью, имея в виду как капельные жидкости, так и газы рассмотрены будут случаи движения вынужденного и свободного. Мы ограничимся наиболее важными в теплотехнике случаями продольного обтекания труб, при котором жидкость движется параллельно трубам, внутри их или между ними, и поперечного обтекания пучка труб, когда газ движется -в апра влении, перпендикулярном к трубам. При этом будем рассматривать лишь турбулентное движение жидкости. Кроме того, мы остановимся на теплоотдаче при конденсации пара и при кипении воды.  [c.245]


Смотреть страницы где упоминается термин Теплоотдача при кипении жидкости внутри труб : [c.314]    [c.193]    [c.208]    [c.305]    [c.645]   
Смотреть главы в:

Техническая термодинамика и теплопередача  -> Теплоотдача при кипении жидкости внутри труб



ПОИСК



ЖИДКОСТИ Кипение — Теплоотдача

Кипение

Кипение Теплоотдача

Кипение внутри труб

Кипение жидкости

Теплоотдача

Теплоотдача при кипении жидкости внутри труб и каналов

Теплоотдача при кипении жидкости внутри труби каналов

Теплоотдача при кипении трубах



© 2025 Mash-xxl.info Реклама на сайте