Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление движению жидкости в трубах при турбулентном режиме

СОПРОТИВЛЕНИЕ ДВИЖЕНИЮ ЖИДКОСТИ В ТРУБАХ ПРИ ТУРБУЛЕНТНОМ РЕЖИМЕ  [c.165]

Заметим, что когда турбулентные области в трубе разрастаются, растет и сопротивление движению жидкости (в связи с ростом турбулентных касательных напряжений трения), при этом скорость и уменьшается. Как только она делается меньше критической скорости, разросшиеся турбулентные области обращаются в ламинарные (или выносятся за пределы рассматриваемой части потока) после этого в связи с уменьшением потерь напора (обусловленным переходом турбулентного режима в ламинарный на отдельных участках трубы) скорость v увеличивается, причем турбулентные области снова, появляются и т. д. В связи с таким характером движения в переходной зоне, представить это движение на графике какими-либо определенными кривыми нет возможности. Исключение здесь могут составить только случаи, когда ламинарный режим затягивается и имеет место по длине всего трубопровода (см. прямую 2-3) или, когда в связи с особыми условиями движения турбулентный режим имеет место по длине всего трубопровода (см. линию 5 — 6).  [c.162]


Из предыдущего изложения следует, что потери энергии (напора) в гладких и в шероховатых трубах при ламинарном режиме движения жидкости пропорциональны первой степени скорости, а в случае турбулентного режима — квадрату скорости. При этом квадратичный закон сопротивлений для шероховатых труб справедлив только для вполне турбулентного режима, под которым понимается движение при полном разрушении ламинарного подслоя.  [c.149]

Приведенные способы расчета справедливы как для турбулентного, так и для ламинарного режимов движения жидкости по трубам. Однако расходные характеристики определяются различным путем, в зависимости от режима движения. При турбулентном режиме величины К могут приниматься по таблицам при. ламинарном расходные характеристики должны вычисляться следующим образом значение коэффициента сопротивления а для условий ламинарного режима движения определяется формулой (272)  [c.176]

Согласно (7.12) сопротивление цилиндрической трубы при ламинарном режиме течения пропорционально средней скорости движения жидкости. При переходе к турбулентному течению в силу локальной нестационарности потока инерционные свойства жидкости имеют большое значение и плотность р нельзя исключить из определяющих параметров, поэтому заметно усложнится закон изменения коэффициента сопротивления При Re<10 хорошее сов-  [c.200]

Рассмотрим длинный трубопровод, т. е. такой, в котором потери напора на преодоление местных сопротивлений настолько малы по сравнению с потерями напора по длине, что местными потерями можно пренебречь. В простом напорном трубопроводе постоянного диаметра й при постоянном расходе Q движение жидкости является равномерным установившимся. Обычно движение воды в трубах происходит при турбулентном режиме. Потери напора по длине потока при турбулентном режиме определяют по формуле Дарси — Вейсбаха (см. 26)  [c.114]

Внезапное изменение гидравлического режима движения жидкости, сопровождаемое изменением скорости по величине и направлению, вызывает перераспределение скоростей по живому сечению, возникновение водоворотов, усиление беспорядочного движения, образование противотоков и завихрений. К этим явлениям приводят местные гидравлические сопротивления движению жидкости (резкие повороты, внезапные сужения и расширения, смена диаметров труб и т. п.), на преодоление которых затрачивается часть энергии потока, т. е. наблюдается местная потеря напора. Ее величина, определяемая характером и количеством местных сопротивлений, может достичь значительных размеров, которыми уже нельзя пренебрегать при гидравлическом расчете труб. В результате исследования местных потерь Борда и Беланже установили, что в турбулентном потоке местные потери напора пропорциональны квадрату скорости в сечении за местным сопротивлением, а именно  [c.47]


Задача 2. Пусть при той же схеме трубопровода (см. рис. 72) требуется определить расход жидкости по заданному перепаду напоров ДЯ (потери напора можно не учитывать в местных сопротивлениях или их можно выразить через эквивалентную длину). Так как расход жидкости будет зависеть от режима движения жидкости, который заранее не известен, задачу решают методом последовательных приближений. Для этого в формулу (112) подставляют значения коэффициентов т, п и А, взятые из табл. 10. Предполагается, что известны режим движения жидкости и зона сопротивления (для турбулентного режима). Признаком вероятности ламинарного режима служит высокая вязкость жидкости, зоны вполне шероховатых труб (квадратичный закон сопротивления)—малая вязкость жидкости (вода, бензин) и значительная шероховатость стенок трубы.  [c.139]

Естественно, что законы ламинарного движения жидкости в основном применимы к более узким капиллярам, и, наоборот, к более широким капиллярам и трубам чаще необходимо применять законы сопротивления, учитывающие турбулентный характер потока. Этим объясняется, что гидравлика — наука, занимающаяся, в частности, расчетом течения воды но трубам и каналам в различных промышленных сооружениях, а так ко движения паро-воздушных смесей в отопительных системах, паровых двигателях и других установках,— основывается главным образом на законах двил<ения жидкостей по трубам при турбулентном режиме.  [c.49]

Для гидравлически гладких труб показатель степени п примерно равен 1,75 (tg 2 1,75) в области доквадратичного сопротивления п переменное и изменяется в пределах от 1,75 до 2,0 в области квадратичного сойротивления п = 2,0 (tg ад = 2). Поэтому в гидравлике для турбулентного режима движения жидкости при больших числах Рейнольдса принята квадратичная зависимость между средней скоростью движения и потерями напора  [c.106]

Однако течение жидкостей в каналах (трубах, к примеру) при турбулентном режиме связано с преодолением большего сопротивления значительное сопротивление при турбулентном обтекании испытывают и движущиеся тела. Это приводит к дополнительным затратам энергии. Продлить бестурбулентное движение , усмирить пограничный слой (непосредственно примыкающий к омываемой поверхности тонкий слой заторможенной жидкости) в этих случаях — проблема, успешное решение которой приведет к существенному эффекту.  [c.110]

Основное значение имели теоретические и экспериментальные исследования со]1ротивления в трубах и каналах при движении в них воды и других вязких жидкостей. Теоретическое решение этой затачи бььто дано самим Стоксом в 1846 г. и СтеФаном в 1862 г. Обстоятельные экспериментальные исследования движения вязкой жидкости в трубах очень малого диаметра были проведены Ж. Пуазейлем в 1840—1842 п. и О. Рейнольдсом в период 1876 — 1883 гг. Более ранние опыты были проведены Хагеном и опубликованы в 1839 i. Ко времени работ Пуазейля и Рейнольдса относится открытие двух различных режимов движения вязкой жидкости в трубах — ламинарного и турбулентного, Работы Рейнольдса послужили началом создания теории турбулентного движения, применение которой в вопросах гидравлики, гидротехники, метеорологии, теории сопротивления и теплопередачи оказалось весьма обширным и плодотворным.  [c.27]

Главное влияние на процесс теплообмена конденсирующегося пара со стенкой оказывает пленка конденсата, так как тепловое сопротивление ее отличается большой величиной вследствие низкой теплопроводности всех неметаллических жидкостей. Интенсивность отвода тепла от поверхности конденсации через пленку конденсата зависит от температурного напора, характера движения, физических свойств и толщины пленки. При вертикальном расположении трубы наблюдаются два основных режима движения пленки конденсата. В верхней части трубы пленка имеет ламинарный характер. Затем по мере увеличения ее толщины увеличивается скорость движения лленки и ламинарный режим двлжения ее переходит в турбулентный. При ламинарном движении пленки конденсата имеют место также два режима течения. В верхней части трубы наблюдается чисто ламинарное течение, а потом оно переходит в ламинарный волновой режим, при котором на поверхности пленки конденсата появляются капиллярные волны.  [c.271]



Смотреть страницы где упоминается термин Сопротивление движению жидкости в трубах при турбулентном режиме : [c.33]    [c.88]   
Смотреть главы в:

Техническая гидромеханика  -> Сопротивление движению жидкости в трубах при турбулентном режиме

Техническая гидромеханика 1978  -> Сопротивление движению жидкости в трубах при турбулентном режиме



ПОИСК



Движение жидкости в трубах

Движение жидкости турбулентное

Движение турбулентное

Жидкости Режим турбулентный

Режим движения

Режим движения жидкости

Режим движения турбулентный

Режим турбулентный

Сопротивление движению

Сопротивление трубы

Турбулентное движение жидкости 33 Турбулентность

Турбулентное сопротивление

Турбулентный режим движения жидкости

Турбулентный режим движения жидкости в трубах



© 2025 Mash-xxl.info Реклама на сайте