Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрический разряд в газах

Тлеющий разряд. При понижении давления газа в разрядном промежутке разрядный канал становится более широким, а затем светящейся плазмой оказывается равномерно заполнена вся разрядная трубка. Этот вид самостоятельного электрического разряда в газах называется тлеющим разрядом (рис. 167).  [c.171]

Никакой другой источник света не имеет сходного распределения энергии по спектру. Так, например, электрический разряд в газах или свечение под действием химических реакций имеет спектры, существенно отличные от свечения черного тела. Распределение энергии по спектру раскаленных тел также заметно отличается от свечения черного тела, что было выше проиллюстрировано (см. рис. 8.6) сравнением спектров распространенного источника света (лампы накаливания с вольфрамовой нитью) и черного тела.  [c.409]


Допплеровский сдвиг и расширение ионных линий в положительном столбе электрического разряда в газах наблюдали С. Э. Фриш и Ю. М- Каган [ ]. Положительные ионы в плазме электрического разряда ускоряются электрическим полем по направлению к катоду. Кроме того, они принимают участие в беспорядочном тепловом движении, что вызывает как сдвиг, так и расширение ионных линий. Благодаря возникающей при этом анизотропии в движении ионов, ширина и сдвиг одной и той же ионной линии различны при наблюдении под разными углами к оси разряда. Экспериментально сдвиг и расширение наблюдались на линиях ионизованных инертных газов (Аг II, Кг И, ХеИ) с помощью эталона Фабри и Перо. Допплеровский характер сдвига был, во-первых, установлен на основании того факта, что он менял знак с изменением направления электрического поля во-вторых, в соответствии с допплеровским соотношением  [c.486]

Химическая реакция может быть осуществлена либо ирн фотодиссоциации молекул, либо при электрическом разряде в газе, либо при взаимодействии соответствующих молекул и атомов и их соединений. В соответствии с этим и химические лазеры могут быть подразделены на три группы. Во всех случаях энергия, высвобожденная при химических реакциях, в той или другой мере превращается в энергию лазерного луча. Процесс, протекающий в лазерах первой группы, может быть представлен, например, следующим образом. Фотон, энергия которого hv больше энергии межатомной связи, взаимодействует с двухатомной молекулой Л 1 2. Энергия фотона затрачивается на диссоциацию молекулы на два атома и причем один из атомов оказывается в возбужденном состоянии  [c.66]

В лазерах второй группы диссоциация происходит при электрическом разряде в газе. Например, в смесях Ne—О2 и Аг— основным процессом образования возбужденных молекул кислорода является квазирезонансная передача энергии от метаста-бильных атомов благородных газов к молекулам Оа- Возбужденная таким образом молекула кислорода О а, будучи энергетически неустойчивой, диссоциирует на атомы кислорода. В случае смеси Ne—О 2 диссоциация непосредственно приводит к появлению одного из атомов, находящегося в возбужденном состоянии. В случае Аг—О а атом кислорода оказывается на метастабильном уровне, который имеет большое сечение столкновения с электронами, переводящими кислород на верхний уровень рабочего перехода. В этих смесях при давлениях Ne и 63 соответственно 0,35 и 0,014 мм рт. ст. и при давлениях Аг и O.j соответственно 1,3 и 0,036 мм рт. ст. генерируется длина волны к = 0,8446 мкм.  [c.67]


Большое техническое применение нашла так называемая электролюминесценция — излучение, сопровождающее электрический разряд в газах, при котором кине-  [c.21]

РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]

ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ—прохождение электрич. тока через ионизованные газы, возникновение и поддержание ионизованного состояния под действием электрич. поля. Термин разряд возник от обозначения процесса разрядки конденсатора через цепь, включающую в себя газовый промежуток, что происходит, когда напряжение превышает порог пробоя промежутка. Ныне это слово потребляют в более широком смысле.  [c.509]

Ионными н газоразрядными приборами называются электронные приборы, основанные на использовании электрического разряда в газе.  [c.347]

Как известно, форма и цвет электрического разряда в газах в большой степени зависят от давления и состава газа. Если напаять на участке вакуумной системы разрядную трубку и обдувать испытываемые места газом (С.О2, фреоном, светильным и т. п.) или смачивать растворителями (бензин, эфир, спирт), то при проникновении газа или паров пробного вещества через течь в вакуумную систему изменится цвет разряда. Таким образом можно обнаружить течи порядка 10 Па-м= /с.  [c.387]

Во всех современных монохроматических источниках света используются различные типы электрического разряда в газах или парах металла при сравнительно низких давлениях (от нескольких сотен до нескольких десятков миллиметров ртутного столба) чаще всего — тлеющий разряд, либо высокочастотный, либо разряд в полом катоде.  [c.56]

Обычными источниками получения инфракрасных излучений являются нагретые тела. Инфракрасные лучи способен давать также электрический разряд в газах.  [c.26]

Прибор ионный электровакуумный — электровакуумный прибор с электрическим разрядом в газе или парах к приборам такого типа относятся приборы с несамостоятельным разрядом — газотроны и тиратроны, приборы с тлеющим разрядом — газосветные и индикаторные лампы, ионные стабилитроны и другие, приборы с дуговым автоэлек-тронным разрядом—вентили ртутные, игнитроны и т.д. [4J.  [c.151]

Механизм самостоятельного разряда. Развитие самостоятельного электрического разряда в газе протекает следующим образом. Свободный электрон под действием электрического поля приобретает ускорение. Если напряженность электрического поля достаточно велика, электрон лри свободном пробеге настолько увеличивает кинетическую энергию, что при соударе а1и с молекулой ионизует ео.  [c.169]


Электрический разряд в газах бывает и нежелательным явлением, с которым в технике необходимо бороться. Так, например, коронный электрический разряд с проводов высоковольтных линий электропередач приводит к бесполезным потерям электроэнергии. Возрастание этих потерь с увеличением напряжения ставит ггредел на пути дальнейшего увеличения напряжения в линии электропередач, тогда как для уменьшения потерь энергии на нагревание проводов такое повышение весьма желательно.  [c.172]

В подавляющем большинстве газовых лазеров инверсия населенностей создается в электрическом разряде. При этом электроны разряда возбул<дают газ, создавая инверсию населенностей уровней энергии ионов, нейтральных атомов, устойчивых и неустойчивых молекул. Газоразрядный метод применим для возбуждения лазеров как в непрерывном, так и в импульсном режиме. Электрический разряд в газе бывает самостоятельным и несамостоятельным. Несамостоятельные разряды могут быть получены в газах высокого давления и больших объемах. Переход к несамостоятельным разрядам позволил резко поднять мощность и энергию излучения прежде всего таких лазеров с большим КПД, как С02-ла-зеры.  [c.895]

Отрицательное поглощение возможно лишь при неравновесном распределении атомов по уровням, когда верхние уровни относительно больи1е заселены, чем это имеет место при наличии термодинамического равновесия. При электрическом разряде в газах низкого давления и при наличии примеси, столкновения с атомами которой разрушают более низкие энергетические состояния или, наоборот, ведут за счет ударов 2-го рода к селективному заселению высоких уровней, возможно такое отступление от равновесия (см. стр. 463). Это позволяет экспериментально наблюдать отрицательное поглощение при свечении газов  [c.418]

А. Энгель, М. Штенбек. Физика и техника электрического разряда в газах,  [c.149]

С Г. л. получена генерация на более чем 6000 отдельных линиях в очень широкой области спектра от вакуумного УФ до субмиллиметровых волн. Г. л. посвящается примерно половина научных публикаций по лазерам, из них более 60% — газоразрядным лазерам. Конструктивные особенности, мощность генерации, кпд п др. характеристики Г. л. меняются в очень широких пределах. Большое число Г. л. разл. типов выпускается серийно. -Г. Uempavi. ГАЗОВЫЙ РАЗРЯД — прохождение электрич. тока через газ, сопровождающееся совокупностью электрич., оптич. и тепловых явлений. Подробнее см. Электрические разряды в газах.  [c.381]

ДИФФУЗНЫЙ РАЗРЯД — электрический разряд в газе в виде широкого размытого светящегося столба, не имеющего чётко выраженной пространственной структуры . Диффузным может быть любой разряд (напр., тлеющий разряд ИЛИ дуговой разряд) в зависимости от условий, к-рыо должны соответствовать теории Шотки положительного столба (отсутствие рекомбинации в об ьеме длина свободного пробега значительно меньше межэлектродного промежутка). Часто термин Д. р. употребляется как противопоставление коптрагиро еаппому разряду.  [c.692]

КОРОННЫЙ РАЗРЯД — высоковольтный самостоятельный электрический разряд в газе достаточной плотности ( 1 атм), возникающий в резко неоднородном электрич. иоле вблизи электродов с малым радиусом кривизны (остриё, тонкие проволоки и т. п.). Бледно-голубое или фиолетовое свечение разряда по аналогии с ореолом солнечной короны дало повод к названию. Помимо излучения в видимой, УФ (гл. обр.), а также в более коротковолновой частях спектра, К. р. сопровождается движением частиц га.за от коронирующего электрода (т, н. злектрич. ветром), шелестящим шумом, иногда радиоизлучением, хим. реакциями (напр., об-ра.чованивм озона и окислов азота в во.здухе .  [c.463]

НЕСАМОСТОЯТЕЛЬНЫЙ РАЗРЯД — элоктрич. ток в газах, существующий при заданной разности потенциалов лишь при наличии внеш, ионизатора (см. Электрические разряды в газах).  [c.334]

ОПТИЧЕСКИЕ РАЗРЯДЫ — газоразрядные явления, аналогичные электрическим разрядам в газе, возникающие в воздухе или др. газе под действием мощных световых (лазерных) полей. До изобретения лазеров изучались и использовались газовые разряды в полях более низких частот, чем оптические в пост, электрич. поле, в ВЧ-, в СВЧ-полях. Лазерная техника открыла физике газового разряда оптич. диапазон. Различают два осн. типа О, р. 1) л а э е р н а я искра — оптич. пробой газа, т. е. бурное нарастание ионизации ранее не ионизированного газа 2) непрерывный О. р.— поддержание в газе уже имеющегося ионизов, состояния под действием светового излучения.  [c.448]

Лит. см. при ст. Электрические разряды в газах. ПАШЕНА СЕРИЯ — спектральная серия в спектрах атома водорода и водородоподобиых ионов. В спектрах испускания П. с. получается при всех разрешённых излучательных квантовых переходах атома Н (и Н-подобных ионов) на уровень энергии с гл. квантовым числом II = 3 со всех вышележащих уровней энергии с Пг > (в спектрах поглощения — при обратных переходах).  [c.552]

ПЛАЗМЕННО-ПУЧКОВЫИ РАЗРЯД — один из ви-дов электрического разряда в газе, в к-ром в межэлектродное пространство вводится ускоренный электронный пучок и плазма разряда разогревается гл. обр, за счёт плазменно-пучковой неустойчивости (см. Пучковая неустойчивость). В результате развития неустойчивости электронный пучок размывается по скоростям с уменьшением ср. энергии электронов в пучке и передачей части первонач. энергии пучка ленгмюровским колебаниям. Затем значит, часть энергии ленгмюров-ских колебаний передаётся тепловым электронам плазмы. Разогрев тепловых электронов происходит за счёт затухания ленгмюровских колебаний при электрон-атоиных и электрон-ионных столкновениях, при рассеянии ленгмюровских колебаний на тепловых электронах с трансформацией ленгмюровских волн в ионнозвуковые, при затухании ленгмюровских колебаний в области уменьшающейся концентрации плазмы и т. д.  [c.609]


П. э. газового промежутка следует рассматривать как нач. стадию электрического разряда в газе. В зависимости от типа разряда могут быть существ, отличия в формировании токового канала и механизма то-КОпрохождения. Наиб, исследован пробой в тлеющем разряде. Существенно различаются механизмы формирования пробоя в дуговых разрядах низкого и высокого рвлеиий, к-рые определяются не только формой электродов и частотой электрич. поля, но также и характером нач. эмиссии (термоэмиссия или холодные эпектро-ды с формированием пятен).  [c.131]

Др. важное отличие плазмеввых проводников от конденсированных заключается в том, что большинство плазменных образований существуют при условии, что через них протекает ток. Таковы классич. электрические разряды в газах, плазма в плазменных ускорителях, тока-маках и др. При изменении тока плазменная структура (конфигурация) плавно или скачкообразно изменяется, в ней могут в широком диапазоне частот развиваться колебания (от акустических до ленгмюровских), на электродах возникать привязки и т. п. Около электродов, помещённых в плазму, обычно возникают при-электродные слон, падение потенциала на к-рых может существенно превосходить падение потенциала в осн. части плазменного объёма (найр., в тлеющем разряде). По этой причине для большинства плазменных систем особое значение имеют не дифференциальные, типа (1), а интегральные характеристики П. п. Для стационарных систем это, в первую очередь, волът-амперные характеристики  [c.132]

СВЕРХВЫСОКОЧАСТОТНЫЙ РАЗРЯД — один из м дов электрического разряда в газе, возбуждаемый быст ропеременным электрич. полем в диапазоне частот  [c.422]

Существует ряд явлений, родственных Э., в к-рых перенос носителей заряда осуществляется не электрич. полем, а градиентом темп-ры (см. Термоэлектрические явления), звуковыми волнами (см, Акустоэлектрический эффект), световым излучением (см. Увлечение электронов фотонами) и т. п. Э. жидкостей, газов и плазмы обладает рядом особенностей, отличающих её от Э. твёрдых тел (см. Электрические разряды в газах, Электрический пробой. Электролиз). Э. М. Эпштейн. ЭЛЕКТРОРАКЁТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)—космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич, энергии, Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям я управляющую функционированием ЭРД, ЭРД—двигатели малой тяги, действующие в течение длит, времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл.-магн. либо эл.-статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердотопливных ракетных двигателях это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл.-хим. двигатели (ЭХД) и ионные двигатели (ИД).  [c.590]

До обжига вакуумных ламп производят их абЛиЦ, т. е. улучшение вакуума дри, первом зажигании ламн с помощью газопоглотителей, сопровождающееся пояалё нием тлеющего электрического разряда в газе.  [c.432]

К источникам света, удовлетворяющим отмеченным требованиям, относятся широко используемые в технике спектроскопии тлеющий разряд ((ейслсровы трубки) высокочастотный электрический разряд в газах и парах элекгрический разряд в разрядных трубках с полым катодом вакуумный электрический дуговой разряд источники света с атомными пучками.  [c.200]


Смотреть страницы где упоминается термин Электрический разряд в газах : [c.171]    [c.87]    [c.23]    [c.448]    [c.352]    [c.594]    [c.616]    [c.250]    [c.415]    [c.704]    [c.116]    [c.64]    [c.26]    [c.289]    [c.313]    [c.149]    [c.592]    [c.43]   
Смотреть главы в:

Теория сварочных процессов  -> Электрический разряд в газах

Теоретические основы сварки  -> Электрический разряд в газах



ПОИСК



Накачка с использованием самостоятельного электрического разряда в разреженных газах

Разряд электрический

Электрический ток в газах



© 2025 Mash-xxl.info Реклама на сайте