Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Акты (испускание и поглощение света)

Для того чтобы правильно (рассчитать лазерную систему, необходимо знать свойства и природу источников излучений как естественного, так и искусственного происхождения. Излучение имеет электромагнитную природу, является одной из форм энергии н обладает корпускулярно-волновыми свойствами. Корпускулярный характер излучения проявляется при испускании и поглощении света, когда имеют место элементарные акты взаимодействия излучения и вещества, а волновой характер — в явлениях дифракции и интерференции. Электромагнитное излучение занимает чрезвычайно широкий диапазон спектра. На рис. 1.1 —это от десяти километров до 10 м. Разумеется, это границы графика, но не самой шкалы электромагнитных волн, которую можно представить себе продолженной по обе стороны.  [c.9]


Хорошо описывая распространение света в матер, средах, волн. О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов фотоэффекта, фотохим. превращений молекул, спектров оптических и пр.) и общие термодинамич. соображения о вз-ствии эл.-магн. поля с в-вом привели к выводу, что элем, система атом, молекула) может испускать или поглощать энергию лишь дискр. порциями (квантами), пропорциональными частоте излучения V. Поэтому световому эл.-магн. полю необходимо сопоставить поток квантов света — фотонов. В простейшем случае энергия, теряемая или приобретаемая изолированной квант, системой в элем, акте вз-ствия с оптич. излучением, равна энергии фотона, а в более сложном — сумме или разности энергий неск. фотонов (см. Многофотонные процессы). Явления, в к-рых при вз-ствии света и в-ва проявляются квант, св-ва элем, систем, изучаются в квантовой оптике методами, развитыми в квантовой механике и квантовой электродинамике.  [c.490]

Соотношение (16.7) справедливо для всех систем, для которых распределение по подуровням возбужденного состояния не зависит от частоты возбуждающего света и вообще от способа возбуждения. Кроме того, для выполнения соотношения (16.7) необходимо выполнение ряда дополнительных условий — отсутствие в системе поглощающих, но не люминесцирующих примесей, отсутствие невозбуждающего поглощения и т. д. Следует отметить, что соотношение (16.7) применимо не только для электронно-колебательных спектров сложных молекул, но и для любых других систем, состоящих из двух подсистем быстрой и медленной. Необходимо только, чтобы время перераспределения энергии внутри медленной подсистемы значительно превосходило длительность возбужденного состояния быстрой подсистемы, как это имеет место у сложных молекул, где рассматриваются переходы между колебательными подуровнями нижнего и первого возбужденного электронных состояний. В сложных молекулах между актами поглощения и испускания света происходит довольно быстрое перераспределение энергии по колебательным степеням свободы, в результате чего перед актом испускания устанавливается равновесное (температурное) распределение по колебательным уровням возбужденной молекулы. В то же время подобное равновесие электронных состояний не имеет места — в возбужденном электронном состоянии имеется значительный избыток молекул.  [c.368]

Универсальное соотношение Степанова. На основании изложенного и с учетом многочисленных экспериментальных фактов, в частности независимости контура полосы флуоресценции от частоты возбуждающего света, можно утверждать, что у сложных молекул между актами поглощения и испускания света происходит очень быстрое перераспределение энергии по колебательным степеням свободы. Поэтому перед актом испускания устанавливается температурное равновесие по колебательным уровням возбужденной молекулы. Однако полное равновесие в системе отсутствует, так как в возбужденном электронном состоянии имеется значительный избыток молекул.  [c.254]


Рис. 1.3. Зависимость формы линии флуоресценции от времени между актом поглощения света и его испускания при t/Ti =0,1 (1) 0,2 (2) — а 2 (i) 10 (4) — Рис. 1.3. Зависимость <a href="/info/144574">формы линии</a> флуоресценции от времени между актом <a href="/info/10258">поглощения света</a> и его испускания при t/Ti =0,1 (1) 0,2 (2) — а 2 (i) 10 (4) —
Одна из центральных проблем современной оптики — изучение процессов, происходящих в возбужденных атомах и молекулах, т. е. процессов, происходящих после акта поглощения света. Такие процессы можно разбить на две группы оптические и неоптические. К числу оптических процессов относятся спонтанные (самопроизвольные) и вынужденные переходы возбужденных частиц на более низкие уровни энергии, сопровождающиеся испусканием световых квантов. Спонтанное испускание универсально, неизбежно осуществляется для всех возбужденных систем. Вероятности спонтанных переходов в разных случаях различны. На рис. 4 спонтанное испускание света изображено жирной стрелкой, направленной вниз. Процесс сопровождается свечением вещества — люминесценцией. Люминесценция изотропных веществ направлена обычно во все стороны, отдельные кванты света независимы друг от друга, обладают случайной фазой. Такое излучение принято называть некогерентным.  [c.9]

До сих пор мы рассматривали процессы поглощения и испускания света, происходящие под действием обычных источников излучения, т. е. процессы, в элементарном акте которых поглощается или испускается один фотон. Однако эти процессы не являются единственно возможными. Известны и многофотонные процессы, когда в одном элементарном акте одновременно поглощаются или испускаются два и более квантов света. Теоретические предпосылки физики многофотонных процессов были заложены еще в 30-х гг. XX в., в период создания квантовой электродинамики.  [c.310]

Следует иметь в виду следующее принципиальное различие между явлениями поглощения и испускания света, с одной стороны, и рассеянием — с другой. В актах поглощения или излучения света участвует один фотон, который или поглощается, или излучается. Это процессы первого порядка. Рассеяние света является процессом второго  [c.108]

Поглощение и испускание света в такой схеме происходят преимущественно из минимумов кривых (наиболее устойчивая конфигурация) и с соблюдением принципа Франка — Кондона (вертикальные переходы). Это значит, что за время электронно-колебательного перехода ориентация частиц растворителя не изменяется. Конечные уровни в актах поглощения и испускания являются неустойчивыми, так как им соответствуют неравновесные конфигурации молекул растворителя. При комнатной температуре и для не слишком вязких растворов за время возбужденного состояния осуществляется полная или частичная релаксация электронных уровней (приближение к равновесной конфигурации частиц среды).  [c.49]

Аксоида неподвижная 181, XIII. Аксоида подвижная 181, XIII. Активация 894, 897, XIV. Активизация геля 298, XV. Активированный уголь 645, XI. Акты (испускание и поглощение света) 111, XIII.  [c.479]

При отсутствии влияния элементарного акта поглощения света на величину Q (т. е. Q не зависит от /) ур-ние (9) полностью описывает П. и. Это типично, напр., для П. и. электронами плазмы путём тормозного, фоторекомбинац., циклотронного механизмов испускания и поглощения (здесь не зависит от / при условии малости влияния актов поглощения на ф-цию распределения электронов по импульсам, как правило, равновесную). Если процессы релаксации к равновесию сильны не только для электронов, но и для фотонов (распределение к-рых тогда близко к распределе-  [c.567]

Изложение начинается с рассмотрения основных привдипов спектроскопии, т. е. с изучения элементарного акта поглощения или испускания фотона одиночным двухуровневым атомом или примесным центром. Необходимость подобного вступления обусловлена тем, что хотя вероятности соответствующих процессов и рассматриваются обычно в курсах квантовой механики, однако при этом остаются в тени некоторые принципиальные вопросы, возникшие в практической спектроскопии одиночного примесного центра, где большую роль играют флуктуации измеряемой величины, отсутствующие в спектроскопии молекулярных ансамблей. Флуктуации проявляют себя, например, в прыжках спектральной линии, когда мы имеем дело с поглощением света одиночной молекулой в полимере или стекле. Такие прыжки линии служат основой для стохастического подхода к проблеме уширения оптических спектров.  [c.9]


Раким образом, квант монохроматического электромагнитного поля во взаимодействии с веществом проявляет себя как частица с энергией и импульсом, определяемыми соотношениями (9.48). Взаимодействие света с веществом можно рассматривать как совокупность элементарных актов поглощения, испускания и рассеяния фотонов, в каждом из которых выполняются законы сохранения энергии и импульса. В рассмотренных выше явлениях фотоэффекта и тормозного излучения мы учитывали только закон сохранения энергии при поглощении или испускании фотона, так как массивный катод мог, не участвуя в энергетическом балансе, принять на себя любой импульс и этим обеспечить выполнение закона его сохранения. Но существуют явления, в которых импульс фотона обнаруживает себя явно и соотношение р=Йк допускает экспериментальную проверку. В качестве примера рассмотрим рассеяние рентгеновского излучения электронами, впервые количественно исследованное Комптоном в 1923 г.  [c.469]

Интенсивность эл.-магн. поля в квант. О. определяет вероятность обнаружения фотона, а структура поля отражает квант, структуру ансамбля элем, излучателей (атомов, молекул) и распределение актов излучения во времени. Т. о., при сохранении физ. смысла поля фотоны, возникающие в актах испускания света и существующие только при движении со скоростью света, приобрели черты матер, ч-ц. При поглощении фотона он перестаёт существовать, а поглотившая его система получает его энергию и импульс. Если, взаимодействуя с другой ч-цей, фотон не поглощается, то он изменяет свою энергию и импульс (сохраняя абс. величину скорости) в соответствии с законами соударения двух матер, тел. Фотонные г едставления позволили Эйнштейну объяснить осн. законы фотоэффекта, впервые исследованные А. Г. Столетовым в 1888—90, и дать ясную трактовку фотохим. превращений. Они дают наглядное истолкование существованию коротковолновой границы в тормозном излучении эл-нов (макс. энергия фотона  [c.493]

Наконец, теория Бора объясняет и появление сплошного спектра поглощения за пределами серий. Как указано в 2, по Бору поглощение связано с поднятием электрона с нормального уровня на один из более высоких. При этом, благодаря наличию прерывного ряда стационарных состояний, поглощаются только определенные частоты света, которые совпадают с частотами линий испускания. В случае атома водорода такими линиями поглощения явятся линии лаймановской серии. Если же частоты падающего света v > v , где Voo—частота, соответствующая пределу серий, то при акте поглощения атому передается энергия /zv, большая, чем энергия ионизации. Падающим светом электрон выбрасывается за пределы атома — возникает процесс фотоиопи-зации. При этом, так как вне атома электрон может иметь любую скорость, а вместе с тем и любую энергию eV, то в силу соотношения  [c.29]

Вторая часть определения — признак длительности — была введена С. И. Вавиловым, чтобы отделить Л. от раал. видов рассеяния, отражения, парамет-рич. преобразования света, тормозного и Черенкова — Вавилова излучений. В отличие от рассеяния света, при Л. между поглощением и испусканием происходят промежуточные процессы, длительность к-рых больше периода световой волны. Однако критерий сравнения длительности этих процессов с периодом световой волны недостаточен, чтобы, напр., отделить резонансное рассеяние от т. ы. резонансной флуоресценции (см. ниже). При больвюм времени жизни возбуждённого состояния акт резонансного рассеяния длится долее периода световых колебаний, как и процессов когерентного испускания света, системой атомов (см. Фотонное эхо). Однако в этих процессах сохраняются определ. соотношения между фазами поглощённой и испущенной световых волн, в то время как при Л. эта корреляция утрачивается. Поэтому целесообразно отделять Л. от др. процессов по времени фазовой релаксации поляризации среды.  [c.624]

ПОЛЯРИЗОВАННАЯ ЛЮМИНЕСЦЕНЦИЯ. Люминесцентное излучение мн. объектов полностью или частично, линейно или циркулярно поляризовано вследствие анизотропии элементарных актов поглощения и испускания квантов света в процессе люминесценции. Если лгоминесциругощая среда макроскопически анизотропна, то изл атели (атомы, молекулы, ионы) имеют преимуществ, ориентацию моментов, к-рая п определяет поляризацию люминесценции. Анизотропия в среде может быть и наведённой, возникающей в результате направленной ориентации излучателей во внеш. Поле (электрическом, магнитном), а также анизотропии возбуждения (в частности, при возбуждении люминесценции поляризов. светом).  [c.68]

Квантовая теория рассеяния света. Последоват. описание Р. с. возможно только квантовой теорией взаимодействия света с веществом (в квантовой электродинамике). В этой теории элементарный акт Р. с, трактуется как поглощение веществом падающего фотона с энергией Я<о, импульсом Як и ноляризацией ц, а затем спонтанное испускание рассеянного фотона с энергией йш, импульсом Йк и поляризацией х. Вместе с таким процессом идёт и другой, когда вначале испускается фотов с характеристиками йм, йк и /л (рассеянный), а затем поглощается падающий. Оба процесса наглядно изображаются соответствующими диаграммами Фейнмана (рис. 1), в к-рых квантовые состояния  [c.277]

В результате развития квантовой механики стало ясно, что ни наличие волновых свойств, проявляющихся в волновых свойствах света, ни способность исчезать или рождаться в актах поглощения и испускания не выделяют Ф. среди др, элементарных частиц. Оказалось, что всем частицам вещества, напр, электронам, присущи не только корпускулярньсе, но и волновые свойства, и была установлена возможность взаимопревращения элементарных частиц. Так, в эл.-статич, поле атомного ядра Ф. с энергией > I МэВ может превратиться в электрон и позитрон (процесс рождения пар), а при столкновении электрона и позитрона может произойти их аннигиляция в два (или три) у-кванта.  [c.354]

Согласно квант, теории, процесс К. р. с. состоит из двух связанных между собой актов — поглощения первичного фотона с энергией кх и испускания фотона с энергией ку (где v = v v ), происходящих в результате вз-ствия эл-нов молекулы с полем падающей световой волны. Молекула, находящаяся в невозбужДёНном состоянии, под действием кванта с энергией через промежуточное электронное состояние, испуская квант Ь у—V/), переходит в состояние с колебат. энергией Лг/. Этот процесс приводит к появлению в рассеянном свете стоксовой линии с частотой V—VI (рис. 3, а). Если фотон поглоща-  [c.303]



Смотреть страницы где упоминается термин Акты (испускание и поглощение света) : [c.554]    [c.422]    [c.112]    [c.44]    [c.537]    [c.43]    [c.152]    [c.419]    [c.357]    [c.12]   
Техническая энциклопедия Том 1 (0) -- [ c.111 ]



ПОИСК



Акты (акт)

Акты (испускание и поглощение

Акты (испускание и поглощение света) 111, XIII

Испускание 363—369

Испускание и поглощение света

Испускание света

Поглощение

Поглощение света



© 2025 Mash-xxl.info Реклама на сайте