Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примеси доноры

В примесном полупроводнике и-типа атом примеси (донор) D ионизуется в ходе реакции D D+ е, причем освобождается электрон проводимости е. Считая кристалл с примесью атомов D и ионов D+ идеальным разбавленным твердым раствором, а электроны проводимости — идеальным газом, вывести на основе термодинамического рассмотрения формулу для равновесной плотности электронов проводимости.  [c.249]


ТОЛЬКО При НИЗКИХ температурах, когда достаточно быстро диффундируют разве лишь междоузельные ионы. При повышении температуры дефекты становятся более подвижными, но зато уменьшается стабильность пар, и наблюдать за образованием пар можно только при более высоких концентрациях дефектов. На рис. 62 представлена концентрационная зависимость степени ассоциации в условиях равновесия при нескольких температурах для примеси донора лития и акцептора галлия в германии.  [c.136]

Учитывая, что в германии е=16, а т =0,25т, получаем для энергии ионизации примесных атомов V группы d 0,01 эВ. В кремнии, где e =12, а т 0,4т, энергия ионизации должна быть примерно 0,04 эВ. Таким образом, достаточно весьма незначительной энергии, чтобы перевести пятый электрон из связанного состояния в свободное , т. е. в зону проводимости. Примеси, которые поставляют свободные электроны, называют донорными. В табл. 7.2 приведены измеренные значения энергии ионизации доноров в кремнии и германии. Они достаточно хорошо согласуются с расчетными значениями Ed.  [c.238]

Опыт показывает, что с увеличением концентрации доноров (или акцепторов) наклон прямых 1па от 1/Т в области примесной проводимости уменьшается. Согласно (7.168) это значит, что уменьшается энергия ионизации примеси. При некоторой критической концентрации она обраш,ается в нуль. Для элементов пятой группы в германии эта критическая концентрация составляет ЗХ Х10 см , в кремнии 8-10 см . Полупроводник, в котором энергия ионизации примеси обратилась в нуль, называют часто полуметаллом. В нем концентрация электронов и электропроводность нечувствительны к температуре (кроме области температур, где начинается собственная проводимость).  [c.254]

Поверхностные уровни, так же как уровни примесей или дефектов, могут быть донорами или акцепторами электронов. Следовательно, они могут изменять концентрацию носителей заряда. Через них может осуществляться рекомбинация носителей.  [c.261]

Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни.  [c.364]


Концентрация вводимой примеси при использовании таких традиционных термодинамических равновесных методов легирования, как, например, диффузия, не превышает некоторого предела, определяемого растворимостью. В то же время методом ионной имплантации можно ввести в полупроводник практически неограниченное количество примесных атомов. Таким образом, представляется возможным реализовать второй путь, т. е. получить примесную проводимость за счет, введения большой концентрации доноров (или акцепторов). Нам удалось без предварительного снижения плот-366  [c.366]

Различают два вида примесных уровней донорные и акцепторные. Первые располагаются в запрещенной зоне ниже дна зоны проводимости и способны отдавать под действием возбуждения электроны в зону проводимости. При этом доноры (донорные атомы) превращаются в положительно заряженные ионы, которые не участвуют в электронной проводимости (рис. 35). Полупровод Ник с донорными примесями  [c.91]

Если в естественный полупроводник IV группы ввести в качестве примеси трехвалентные атомы из III группы элементов, то для осуществления ковалентной связи с четырехвалентным окружением этим атомам не хватает по одному электрону. Недостающие электроны они заимствуют у соседних атомов с затратой небольшой энергии порядка 10 эВ. В результате в валентной зоне возникает дырка, которая и обусловливает дырочную проводимость полупроводника. Поскольку энергия ионизации основных атомов для образования дырки мала ( 10 эВ), при комнатной температуре на каждый атом примеси приходится по одной дырке. Естественная дырочная и электронная проводимости при этом, как и в случае донор-ных примесей, малы. Поэтому доминирующей будет дырочная проводимость. Трехвалентные атомы примеси называются акцепторными. Акцепторные энергетические уровни лежат в запрещенной зоне весьма близко к ее верхнему краю. Для полупроводников IV группы периодической системы элементов наиболее важными акцепторными примесями являются элементы III группы-галлий, индий, таллий.  [c.351]

Введение в полупроводник примесных атомов приводит к нарушению в нем стехиометрического состава и периодичности кристаллической решетки. Примеси вносят в структуру полупроводника дополнительные квантовые уровни, отличающиеся от зонной структуры уровней основного кристалла. В полупроводниках примеси в зависимости от их природы и природы полупроводников могут образовывать п- или р-проводимости. Примеси, образующие и-проводимость, должны иметь большую валентность, чем валентность, основного полупроводника примеси, создающие р-проводимость, должны иметь валентность меньшую по сравнению с валентностью основного полупроводника. Например, для четырехвалентного германия пятивалентные примеси As, Р, Sb и др. создают электронную проводимость, поскольку четыре атома примеси, занимая в кристаллической решетке германия определенные узлы, образуют ковалентные связи с соседними атомами германия, а избыточный (пятый) электрон внешней орбиты мышьяка остается свободным. Такие свободные электроны создают электронную проводимость. Примеси, освобождающие электроны, называются донорами, а соответствующие им энергетические уровни — донорными  [c.282]

Энергетические уровни (локальные уровни) донорных примесей при малой концентрации располагаются в запрещенной зоне, вблизи от зоны проводимости и отделены от нее узкой полосой значений энергии 1 д. Энергия W ионизации донора — минимальная энергия, необходимая для перевода электрона с донорного уровня в зону проводимости (рис. 13.1, б). Введение акцепторов сопровождается образованием локальных уровней, приподнятых над валентной зоной на величину (рис. 13.1, в), которая представляет собой минимальную энергию, необходимую для перевода электрона, валентной зоны на локальный акцепторный уровень. Заметим, что в энергетической диаграмме по оси ординат откладываются значения энергии электрона, тогда как абсцисса на диаграмме масштаба не имеет.  [c.173]

Примеси, являющиеся источником электронов проводимости, называются донорами, а энергетические уровни этих примесей — донорными уровнями.  [c.157]

Полупроводники, содержащие одновременно донорную и акцепторную примеси. Широкое практическое применение получили полупроводники, содержащие одновременно донорную (Nj ) и акцепторную (iVa) примеси. На рис. 6.6 показана зонная структура такого полупроводника. Так как электроны стремятся занять наинизшие энергетические состояния, то они переходят с донорных атомов на акцепторные. Если концентрация доноров Л д больше, чем акцепторов N , то все акцепторные уровни оказываются занятыми электронами с донорных центров и не могут принимать электроны из валентной зоны. В то же время оставшиеся Л д — Мц доноров могут отдать свои электроны в зону проводимости, так что в целом такой полупроводник будет иметь проводимость п-тина. Происходит как бы компенсация акцепторов донорами.  [c.168]


Положение уровня Ферми в примесных полупроводниках зависит как от концентрации примеси, так и от того, является ли примесь донорной или акцепторной. В случае донорной примеси (я-полупроводник) имеет место переход электронов донорных атомов в зону проводимости при этом концентрация электронов возрастает, что приводит к возрастанию энергии Ферми Wp и смещению уровня Ферми вверх, к зоне проводимости. Чем больше концентрация доноров, тем большее количество электронов переходит в зону проводимости и тем на большую величину смещается уровень Ферми. В случае введения в полупроводник акцепторных примесей (р-полупроводник) наблюдается обеднение электро-  [c.58]

Элементы V группы таблицы Д. И. Менделеева (Н, Р, 5Ь, Аз) способны создавать в карбиде кремния донорные уровни с различной энергией активации. Среди этих элементов наиболее доступным в чистом виде и технологически удобным является азот, который и выбран в качестве основной донорной примеси при легировании кристаллов карбида кремния. При малых концентрациях энергия активации азота составляет величину 0,1 эв. Экспериментально была найдена зависимость концентрации доноров в кристалле от парциального давления азота в атмосфере печи  [c.49]

Примесная компенсация, а) Объяснить явление примесной комнен-сации. т.е, явление снижения концентрации носителей и величины проводи-мостя полупроводника, изначально обладавшего проводимостью некоторого (п или р) типа, при добавлении примесей (доноров или акцепторов) соответственно противоположного типа. Предположить для простоты, что подвижности электронов и дырок одинаковы.  [c.418]

Примеси, увеличивающие число свободных электронов в полупроводнике, называют донорными примесями (донор — дающий), а полупроводник, имеющий донорную примесь и обладающий электронной проводимостью, называют полупроводником л-типа (от слова negative — отрицательный). Полупроводники, в которых основными носителями тока являются дырки , называют полупроводниками р-типа (от слова positive — положительный), а примеси, создающие дырочную проводимость, называют акцепторными (акцептировать — захватывать).  [c.139]

Примесная проводимость. Проводимостью проводников, предварительно хорошо очищенных, можно управлять искусственным введением приА есей двух видов. Примеси, обуславливающие преимущественно электронную проводимость, называют донорами, а дыроч-Е1ую проводимость — акцепторами.  [c.173]

Для изготовления полупроводниковых приборов важное значение имеют монокристаллы кремния, весьма тщательно очищенные от примесей. Температура плавления кремния 1420 0. Собственная проводимость кремния yi = = 3-10 1/ом-см отвечает концентрации носителей п,- = 10 Мсм запрещенная зона W =l,l2 эв (табл. 13.1). Получение дырочной проводимости достигается введением акцепторов — элементов III группы (алюминий, бор). Электронный кремний получают при введении доноров — элементов V группы (л1ышьяк, сурьма, фосфор). Подвижность электронов и дырок = = Г 400сж /вХсе/с, Up = 500 см"1в-сек диэлектрическая проницаемость е = 12,5. Энергия ионизации доноров имеет небольшие значения для As 1Гд = 0,049 эв, для Sb энергия 1 д = 0,039 эв, для Р 1 д =  [c.181]

Второй метод основан на изменении скорости вытягивания затравки из расплава, содержащего акцепторные и донорные примеси. Дело в том, что объем входящих в растущий кристалл примесей зависит не только от их содержания в расплаве, но и от скорости вытягивания. Величина коэффициента распределения си (отношение концентраций нрнмесей в твердой и жидкой фазах) для донорных примесей выше, чем для акцепторных. Так, при использ овании для германия доноров Р и As величина /С,,асп = = 0,12 н- 0,14, а акцептора In = 0,001. Допустим, что в расплаве доиорные примеси содержатся в избытке по сравнению с акцепторными, тогда ирн медленном вытягивании монокристалла в нем будет получаться г-область, а при быстром р-область. Это объясняется тем, что при малой скорости вытягивания акцепторная примесь, вытесняемая в жидкую фазу, успевает диффундировать в расплаве и его состав выравнивается.  [c.184]

Введение примесей ие сопровож,яается таким эффектом, как в кристаллах, Атомы примесей в стекле попадают преимущественно в междоузлия ввиду отсутствия Строгого порадка и наличия расширенных междоузлий благодаря этому происходит смещение локальных уровней — донориых в сторону валентной зоны, а акцепторных — по направлению к зоне проводимости поэтому значение уровней и их влияние на проводимость сильно падает. -Кроме того, влияние доноров и акцепторов сильно уменьшается благодаря многочисленным локальным уровням, появление которых обусловлено флуктуацнямн в ближней порядке атомов. В стеклах отсутствует примесная проводимость, что объясняется приведенными соображениями. Наряду со стеклами, полученными сплавлением окислов металлов, известны стеклообразные бескислородные полупроводники, именуемые халькогениднымн. Это  [c.192]

Сурьмянистый индий. Полупроводник этого типа получают сплавлением компонентов, после чего сплав подвергают зонной плавке для удаления посторонних примесей. Монокристаллы получают вытягиванием из расплава. Температура плавления = 523° С, энергия запрещенной зоны невелика, = 0,18зв. Основная акцепторная-при-месь — цинк, донорная — теллур. Энергия активации доноров порядка 10 эв. Подвижность электронов достигает огромной величины  [c.195]

Рио. 8-1. Влияние примесей на энергетическую диаграмму полупроводникои а — собственный полупроводник б — полупроводник с донор-ной примесью, электропроводность электронная (л-ти-па) в — полупроводник с акцепторной примесью, электропроводность дырочная (р-типа)  [c.232]

Доноры и акцепторы. Рассмотрим роль тех примесей, атомы iOTopbix создают дискретные энергетические уровни в пределах запрещенной зоны полупроводника. При небольшой концентрации примесей их атомы расположены в решетке полупроводника на таких больших расстояниях друг от друга, что они не взаимодействуют, а потому энергетические уровни их почти такие же, как в отдельном (свободном атоме. Вероятность непосредственного перехода электронов с одного примесного атома на другой ничтожно мала. Однако примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны.  [c.233]


Доноры. Заполненные при отсутствии внешних энергетических воздействий (теплота, свет) примесные уровни расположены р запрещенной зоне около дна зоны проводимости (рис. 8-1, б). При этом энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение злектронов решетки. Положительные заряды, возникшие у отдален-ь ых друг от друга примесных атомов (на рис. 8-1,6 уровни примеси г оказаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности. Полу-лроводник с такой примесью имеет концентрацию электронов, большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником п-типа, а примеси, поставляющие электроны в зону проводимости, — донорами.  [c.233]

Примеси внедрения. Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междоузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что, в противоречие с указанным выше правилом валентности, литий (I группа), внедряясь в междоузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междоузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко о грыва-ющегося от своего атома в среде с большой диэлектрической проницаемостью (б германия-16). Образовавшийся ион лития меньших размеров может уже внедряться в тесные междоузлия решетки, а освободившийся электрон обусловливает электропроводность п-типа. Внедрение в междоузлия решетки полупроводника атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-типа. Если атом Ge или Si под влиянием энергетического воздействия перебрасывается в междоузлие, то образуются два примесных уровня донорный внедренного атома и акцепторный пустого узла.  [c.236]

Примесные полупроводники донор-ного типа. В характере зависимости положения уровня Ферми и концентрации свободных носителей заряда примесных полупроводниках от температуры можно условно выделить три области область низких температур, истощения примеси и перехода к собственной проводимости.  [c.164]

Полупроводники имеют два вида проводимости электронную (я — negative), когда под действием поля передвигаются избыточные электроны, образующиеся под влиянием донаторов (доноры — фосфор, мышьяк, сурьма), и дырочную (р — positive), когда под действием поля передвигаются дырки (недостача электрона), образующиеся под влиянием акцепторов (индий, галлий). При наличии примесей обоих типов характер проводимости определяется разностью концентраций свободных электронов и дырок. При наличии областей с обоими типами проводимостей их граница (электронный дырочный переход) обладает свойствами нелинейного сопротивления.  [c.563]

Радиационное легирование. Доноры и акцепторы могут возникать в результате ядерных реакций. Паиб. важны реакции под действием тепловых нейтронов, к-рые обладают большой проникающей способностью. Это обеспечивает однородность распределения примеси. Концентрация нримесей, образующихся в результате нейтронного облучения, определяется соотношением  [c.579]

В некристаллич. и жидких П. примеси ведут себя иначе, чем в кристаллических. Отсутствие кристаллич. структуры приводит к тому, что примесный атом иной валентности, чем замещае 1ЫЙ, может насытить своя валентные связи, так что ему будет невыгодно присоединять лишний электрон или отдавать свой электрон. В результате примесный атом оказывается электрически неактивным. Это обстоятельство не позволяет. менять путём легирования тип проводимости, что необходимо, вапр., для создания р — п-переходов, Нек-рые аморфные П. изменяют электронные свойства под действием легирования, но в значительно меньшей степени, чем кристаллич. П. Чувствительность аморфных П. к легированию может быть повышена технол. обработкой. Насыщение аморфного 81 водородом и последующее легирование донорами или акцепторами обеспечивает п- или р-тип проводимости. Таким способом по-лзч1ен р — -переход в плёнках аморфного 8г, аморфный 8[ стал перспективны.м материалом для солнечных батарей (см. Аморфные и стеклообразные полупроводники, Жидкие полупроводники).  [c.38]

Если есть доноры и акцепторы, причём Nд > Л д, то каждый акцептор захватывает по электрону от доноров. Тогда при полной ионизации доноров концентрация электронов га = 1Уд — Nд. Аналогично при 1Уд > ТУд р = ТУа — Л д. Т. о., примеси компенсируют друг друга. Поэтому П., в к-рых присутств5Ш)Т я донорные и акцепторные примеси, наз. компенсированными степенью компенсации К наз. отношение концентраций неосновных (фоновых) и основных примесей, так что о X  [c.39]

На рис. 5 схематически показана зависимость 1п(1/и) от ЦТ в П. п ипа. Крутой участок (I) соответствует собств. П. Согласно (16), энергия активации, характеризующая угол наклона прямой в этой области, равна g 2. В области II все доноры ионизованы и н = = Nn — N-y. В самой низкотемпературной области (III) почтя все электроны находятся на примесях и энергия активация, согласно (22), равна 1 д. В слабо-компенсиров. П., где К i, между областями III я II существует область, в к-рой, согласно (20), энергия активации равна д/2.  [c.40]


Смотреть страницы где упоминается термин Примеси доноры : [c.284]    [c.186]    [c.402]    [c.138]    [c.252]    [c.295]    [c.91]    [c.118]    [c.133]    [c.656]    [c.185]    [c.98]    [c.452]    [c.189]    [c.190]    [c.515]    [c.326]    [c.579]    [c.40]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.117 ]



ПОИСК



Донор

Прима

Примеси

Примеси в полупроводниках доноры и акцепторы



© 2025 Mash-xxl.info Реклама на сайте