Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача, теплопередача

Коэффициент теплоотдачи, теплопередачи Коэффициент излучения  [c.256]

Коэффициент теплопроводности Коэффициент теплоотдачи теплопередачи  [c.257]

Плотность теплового потока Коэффициент теплопроводности Коэффициент теплоотдачи (теплопередачи)  [c.465]

Коэффициент теплоотдачи (теплопередачи)  [c.294]

Теплоемкость, энтропия системы Удельная теплоемкость, удельная энтропия Удельная газовая постоянная Тепловой поток Коэффициент теплообмена (теплоотдачи, теплопередачи) Температурный градиент Теплопроводность Температуропроводность  [c.314]


Коэффициент теплообмена (теплоотдачи, теплопередачи) есть отношение плотности теплового потока к перепаду температуры. Имеет размерность  [c.45]

Коэффициент теплоотдачи, теплопередачи 1 ккал/(м2-ч-К)=1,1630 Bt/(m -K)  [c.225]

Коэффициент теплоотдачи, теплопередачи  [c.162]

В настоящее время под интенсификацией теплообмена принято понимать суммарный эффект увеличения интенсивности теплоотдачи (теплопередачи) при заданном уровне энергозатрат и заданных начальных и конечных температурах рабочих сред.  [c.509]

Коэффициент теплообмена, теплоотдачи, теплопередачи  [c.387]

Теплоизоляция внутренняя 344 Теплоотдача, теплопередача 187, 189 Теплота образования 204, 205, 232, 233, 235  [c.493]

Какие процессы теплообмена называют теплоотдачей Теплопередачей  [c.130]

Часто приходится рассчитывать стационарный процесс переноса теплоты от одного теплоносителя к другому через разделяющую их стенку (рис. 12.1). Такой процесс называется теплопередачей. Он объединяет все рассмотренные нами ранее элементарные процессы. Вначале теплота передается от горячего теплоносителя к одной из поверхностей стенки путем конвективного теплообмена, который, как это показано в 12.1, может сопровождаться излучением. Интенсивность процесса теплоотдачи характеризуется коэффициентом теплоотдачи а.  [c.97]

Термическое сопротивление Rk можно уменьшить различными способами, воздействуя на любую из составляющих Ru / 2- Как отмечалось в 9.2, интенсифицировать конвективный теплообмен и уменьшить можно путем увеличения скорости движения теплоносителя, турбулизации пограничного слоя и т. д. Термическое сопротивление теплопроводности Rx зависит от материала и толщины стенки. Однако прежде чем выбирать методы воздействия на процесс теплопередачи, необходимо установить вклад отдельных составляющих Ra, Ri. и Ra2 в суммарную величину Rk. Естественно, что существенное влияние на Rk будет оказывать уменьшение наибольшего из слагаемых. В широко используемом в технике процессе передачи теплоты от капельной жидкости к газу через металлическую стенку наибольшее термическое сопротивление имеет место в процессе теплоотдачи от газа к стенке Ra2, а остальные термические сопротивления Ra.[ и Rx пренебрежимо малы по сравнению с ним (см. пример 12.2).  [c.100]

По методике, изложенной в гл. 10, рассчитывают коэффициенты теплоотдачи, а затем по формуле (12.11) —коэффициент теплопередачи к.  [c.109]

ПЕРЕВОДНЫЕ МНОЖИТЕЛИ ДЛЯ ЕДИНИЦ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА, КОЭФФИЦИЕНТОВ ТЕПЛООБМЕНА (ТЕПЛООТДАЧИ) И ТЕПЛОПЕРЕДАЧИ. КОЭФФИЦИЕНТОВ ТЕПЛОПРОВОДНОСТИ, ТЕМПЕРАТУРОПРОВОДНОСТИ И ТЕМПЕРАТУРНОГО ГРАДИЕНТА  [c.21]


Наряду с исследованием средней интенсивности процесса ( 6-9) проводилось изучение и локальной теплоотдачи ( 7-1). Во всех случаях использовалась известная методика стационарного теплового режима, но не всегда предусматривалась предварительная гидравлическая стабилизация движения твердых частиц и жидкости и, пожалуй, нигде не учитывалось нарушение такой стабилизации при переходе дисперсного потока из изотермического участка в неизотермический, теплообменный участок. Таким образом, влияние условий входа в должной мере не оценивалось, что является одной из причин определенной несогласованности различных данных. Средний коэффициент теплоотдачи определялся как непосредственно путем замеров температуры стенки [Л. 215, 229, 309, 350], так и косвенно через коэффициент теплопередачи дисперсного потока н охлаждающей (греющей) жидкости через стенку [Л. 18, 38, 137, 352, 361, 358]. Как правило. Dh/Dbh>0,5 и  [c.210]

Выполнить расчет для следующих условий длина каждого хода Z=2,5 м температура воды на входе Оо = 120°С расход БОДЫ (3=0,22 кг/с тепловой поток на единицу длины центрального тепловыделяющего стержня 9г=3-10 Вт/м температура внешней поверхности внешнего канала постоянна по длине и равна Г=116°С коэффициент теплопередачи через разделяющую каналы стенку fe] = = 350 Вт/(м-°С) коэффициент теплоотдачи к внешней стенке (или от внешней стенки) аг=450 Вт/(м-°С) А, и аг постоянны по длине  [c.128]

Коэффициент теплоотдачи и коэффициенты теплопередачи принять постоянными по длине и при их определении использовать физические свойства воды при средней по длине температуре воды в данном канале.  [c.246]

Если для увеличения коэффициента теплопередачи k улучшить условия теплоотдачи от стенки к воде или применять более тонкую стенку из теплопроводного материала, то этими способами увеличить k не удается. Существенно повысить k можно лишь только тогда, когда улучшим передачу тепла от топочных газов к стенке.  [c.382]

В книге излагается и защищается новый подход к анализу и расчету теплопередачи, основанный на отказе от коэффициентов теплоотдачи, теплопередачи и теплопроводности. Предлагается определять тепловой поток для всех видов теплопередачи в функции от термодвижущей силы и параметров системы. Рассмотрены примеры применения предлагаемого подхода ко многим задачам теплопередачи. Книга дает общее представление о вышедшем в США трехтомнике под названием Новая теплопередача и предназначена для научных работников и инженеров, занятых исследованиями и расчетами тепловых устройств.  [c.4]

Обратите внимание на различие между коэффициентами теплопроводности X, теплоотдачи а и теплопередачи к. Эти коэффициенты характеризуют интенсивность различных процессов, по-разному рассчитываются и путать их недопустимо. Коэффициент теплопередачи есть чисто расчетная величина, которая определяется коэффициентами теплоотдачи с обеих сторон стенки и ее термическим сопротивлением. Важно подчеркнуть, что коэффициент теплопередачи никогда не может быть больше а, аг и Х/Ь. Сильнее всего он зависит от наименьшего из этих значений, оставаясь всегда меньше его. В предельном случае, когда, например, ai< tt2 и ai< S/ ,  [c.99]

В таких случаях для интенсификации теплопередачи очень часто оребряют ту поверхность стенки (рис. 12.2), теплоотдача от которой менее интенсивна. За счет увеличения площади Рч оребренной поверхности стенки термическое сопротивление теплоотдачи с этой стороны стенки Ra.i= /oi2F2 уменьшается и соответственно уменьшается значение Rk. Аналогичного результата можно было бы достигнуть, увеличив аг, но для этого обычно требуются дополнительные  [c.100]

Число труб в пакете в горизонтальной плоскости выбирается исходя из скорости продуктов сгорания 6—9 м/с. Ско-))ость эта определяется стремлением, с одной стороны, получить высокие ко- )ффициенты теплоотдачи, а с другой — не допустить чрезмерн010 эолового износа. Коэффициенты теплопередачи при этих условиях составляют обычно несколько десятков Вт/(м -К). Для удобства ремонта и очистки труб от наружных загрязнений экономайзер разделяют на пакеты высотой I — 1,5 м с зазорами ежду ними до 800 мм.  [c.151]


Для большинства нагревательных приборов, имеющих обычно довольно сложную форму, коэффициенты теплоотдачи определены экспериментальным путем при условиях теплообмена, близких к рабочим, их можно найти в сп циаль-ной литературе [15]. В целом коэффициенты теплопередачи в приборах отопления невелики. Например, для прибора, состоящего из трех горизонтальных ребристых труб, расположенных друг над другом, й = 4,5 Вт/(м -К).  [c.195]

Для исследования была выбрана одна четвертая частЬ ОК--ружности, расположенная в горизонтальной плоскости, где находились две точки касания шарового калориметра е соседними шарами. Опыты проводились при Re = 7-10 средний коэффн-циент теплоотдачи для этого режима был равен 343 Вт/(м -° С) температурная разность в металлической обрлочке при мощности электронагревателя 500 Вт составляла - 62° С измерен-кая разность температур в тангенциальном направлении по поверхности между точкой касания и точкой поверхности с мак- симальным локальным коэффициентом теплоотдачи была равна 6°С влияние неоднородности локального коэффициента теплопередачи практически не сказывалось на температурном поле в оболочке уже на расстоянии 12,5 мм от поверхности. Минимальная температура поверхности получалась в области с максимальным коэффициентом теплоотдачи, максимальная— в месте контакта с соседним шаром. При среднем перепаде в оболочке 62°С измеренная разность температур на поверХ ности электрокалориметра, вызванная наличием переменного коэффициента теплоотдачи, составляла 6° С, что не превышает 10% этого перепада. Полученное экспериментальным путем температурное поле было проверено с помощью расчетных- методов. В частности, был разработан метод, основанный на уравнении теплового баланса в форме конечных разностей, и составлен алгоритм для расчета, распределения температур в объеме на ЭВМ.  [c.85]

Для пересчета в единицы СИ приведены таблицы переводных множителей для единиц длины — табл. IX, для единиц времени, площади, объема — табл. X, для единиц массы, плотности, удельного веса, силы — табл. XI для единиц давления, работы, энергии, количества теплоты — табл. XII для единиц мощности, теплового потока, теплоемкости, энтропии, удельной теплоемкости и удельной энтропии — табл. XIII для единиц плотности теплового потока, коэффициентов теплообмена (теплоотдачи) и теплопередачи, коэффициентов теплопроводности, температуропроводности и температурного градиента — табл. XIV.  [c.12]

В Л. 285] приведены результаты лабораторных опытов с трубным пучком, поперечно обтекаемым газом с речным песком и крупной насадкой. Термопары непосредственно помещались в поток. Коэффициент теплоотдачи определялся через коэффициент теплопередачи к охлаждающей воде, движущейся при Re=150-f-200 внутри коротких трубок. Основные результаты [Л. 285] 1) для газовзвеси с песком (при Re=l 700-1-4 400, Р = 0,0008н-0,0162. и /лг) и с крупной насадкой (при Re= I 700 6 300, Р = 0,00062н-0,0074 irl( =  [c.245]

В паровом котле коэффициент теплоотдачи от топочных газов к стенке равен ai = 30 вт1м -град, а от стенки к кипящей воде аа = 5000 вт град , коэ(1)фициент теплопроводности стальной стенки = 50 вт/м-град, а ее толщина равна б == 0,02 м. Стенку считаем плоской. При этих условиях коэффициент теплопередачи k = 29,5 вт/м -град, т. е. он меньше наименьшего а.  [c.382]


Смотреть страницы где упоминается термин Теплоотдача, теплопередача : [c.37]    [c.57]    [c.4]    [c.313]    [c.56]    [c.98]    [c.109]    [c.222]    [c.225]    [c.245]    [c.245]    [c.4]    [c.383]    [c.285]   
Основы техники ракетного полета (1979) -- [ c.187 , c.189 ]



ПОИСК



Коэффициент теплоотдачи и теплопередачи

Коэффициенты теплообмена (теплоотдачи) и теплопередачи

ТЕПЛОПЕРЕДАЧА Теплоотдача к некипящей воде, газам

Теплообменники поверхностные - Коэфициент теплопередачи - Зависимость от коэфициента теплоотдачи

Теплоотдача

Теплопередача



© 2025 Mash-xxl.info Реклама на сайте