Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы поведение при ползучести

В настоящем обзоре делается попытка всесторонне осветить современное состояние вопроса о роли поверхности раздела в упругопластическом поведении композитов с металлической матрицей. Волокнистые композиты и композиты, изготовленные направленной кристаллизацией, рассматриваются с точки зрения очевидных различий в структуре и стабильности их поверхностей раздела. Особое внимание уделено структуре и стабильности поверхности раздела и ее роли при различных видах нагружения, т. е. растяжении, сжатии, ползучести и усталости. Как будет показано ниже, детали поведения поверхности раздела и ее роль стали проясняться с началом применения сканирующей электронной микроскопии, а также в результате эффективного использования электронной микроскопии на просвет и оптической металлографии совместно с рентгеновским микроанализом.  [c.233]


Еще одно свойство медной матрицы, представляющее интерес для настоящего исследования,— ее поведение при ползучести.  [c.282]

Устойчивость нестационарного (зависящего от времени) поведения материала может быть рассмотрена так же, если заменить деформации и перемещения соответствующими скоростями [6, 7, 9, 10, 11]. Все практически важные материалы проявляют некоторую зависимость от времени в неупругой области. Однако для большинства композитов в типичных случаях их применения при низких и умеренных температурах удобной является гипотеза о стационарности (независимости от времени). Исключением являются композиционные материалы с металлической матрицей, предназначенные для работы при высоких температурах. В этом случае свойства ползучести принимаются во внимание в первую очередь.  [c.21]

Квазиоднородный подход, не обеспечивая глубокого понимания поведения композита, не позволяет учесть ряд его особенностей. Например, композиты могут проявлять свойство ползучести при отсутствии каких-либо нагрузок в направлении армирования. Коэффициенты термического расширения композитов зависят в ряде случаев от времени и температуры, хотя составляющие их компоненты такими свойствами и не обладают [12]. Подобное явление связано с релаксацией термических напряжений в полимерной матрице.  [c.250]

Высокотемпературные пластинчатые эвтектики, свойства которых оценивались в условиях ползучести, обычно содержат высокую объемную долю (30 об.%) интерметаллической упрочняющей фазы в матрице, обладающей сравнительно малым сопротивлением ползучести. Для таких материалов могут быть использованы те же представления, которые использовались при обсуждении поведения эвтектик волокнистого строения. В этом случае, однако, высокое сопротивление ползучести будет обеспечиваться при меньших напряжениях на пластинах упрочняющей  [c.142]

Полученные данные и приведенный выше анализ позволяют дать обобщенную концепцию поведения дисперсионно упрочненных сплавов, включающую также и высокотемпературную ползучесть. При этом будет рассмотрена стабильная дисперсная фаза, внедренная в матрицу, в которой дислокации и растворенные атомы не взаимодействуют. При данных условиях можно ожидать, что для первой стадии ползучести будет справедливо уравнение (35), выведенное для движения винтовых дислокаций, имеющих пороги. Такая неустановившаяся ползучесть будет отличаться от ползучести, которая происходит в свободном от дисперсии альфа-твердом растворе, поскольку присутствие дисперсных частиц обусловливает интенсивное поперечное скольжение.  [c.293]

Высокое сопротивление ползучести некоторых сложных керамических материалов обусловливается большой энергией активации для механизма Пайерлса, интенсивным блокированием дислокаций растворенными атомами и большой энергией активации диффузии. У более пластичных материалов наиболее высокая сопротивляемость ползучести достигается, как уже указывалось выше, в результате введения н пластичную матрицу яа основе жаропрочного твердого раствора с о. ц. к. решеткой специальных твердых и одновременно стабильных фаз. Сопротивляемость ползучести таких сплавов определяется не только природой и распределением второй фазы, но и характеристиками ползучести более мягкой матрицы, в которую введена твердая фаза. Дополнительного повышения сопротивляемости ползучести сплава, содержащего дисперсную твердую фазу, можно достигнуть в результате дальнейшего упрочнения пластичной матрицы. Однако ниже будут рассмотрены только однофазные альфа-твердые растворы, чтобы выявить основные факторы, влияющие на поведение материала при ползучести.  [c.299]


Первая модель разрушения Мак-Данелса и др. [39] основана на предположении о том, что скорость ползучести определяется именно поведением волокна. Эта модель пригодна для композитов, в которых волокно гораздо прочнее и жестче, чем вязкая матрица. В таком композите изменение напряжений в матрице при ползучести несувдественно по сравнению с напряжениями в волокне. При этом предусматривается, что время до разрушения волокна не изменяется от дополнительных напряжений в матрице. Таким образом, только долговечность волокна используется полностью.  [c.298]

Соотнои ения (5.1) — (5.5) можно использовать в квази-упругих методах [6] для расчета эффективных релаксационных свойств (е = onst) и свойств ползучести (а = onst). Рассмотрим, в частности, композит с упругими волокнами и вязкоупругой матрицей, поведение которой описывается податливостью при одноосной ползучести Dm t) и коэффициентом Пуассона Vm t). По определению, Dm t) есть отношение продольной деформации к напряжению, причем одноосное напряжение а приложено в момент времени = О и затем поддерживается постоянным vm t) — коэффициент Пуассона, определяемый из того же испытания. В свою очередь податливость матрицы при сдвиговой ползучести 3m(t) находится из выражения  [c.182]

Рассмотрено применение метода конечных элементов для расчета термических усадочных напряжений ) в композитах. В введении отмечено, что большинство ранее предложенных методов основано на линейном подходе. Это приводит, как правило, к завышенной оценке уровня усадочных напряжений. Основной источник ошибок заключается в неучете ползучести полимерной матрицы. В этой главе остаточные напряжения, рассчитанные с учетом ползучести матрицы, сравниваются с соответствующими напряжениями, полученными в предположении об отсутствии ползучести. Показано влияние температурного режима цикла отверждения на напряженное состояние композита носле завершения технологического процесса. Рассмотрены такие ситуации, когда превышение остаточными напряжениями пределов текучести одной из компонент композита приводит к изменениям его деформативных свойств. Дана оценка влияния остаточных напряжений на неунругое поведение композита.  [c.249]

Для борных волокон характерно упругое деформационнонапряженное поведение при низких температурах и большое сопротивление ползучести при повышенных температурах. Максимальная допустимая температура формообразования боралюминия в твердом состоянии не превышает 600° С, волокна при этом претерпевают очень малые пластические деформации до разрушения. Максимальное удлинение материала при разрушении составляет менее 1% (Крейдер). Матрица же обладает высокой пластичностью при малом уровне напряжений уже при 400° С это обеспечивает некоторую возможность формоизменения материала в целом в условиях, когда деформация осуществляется только за счет сдвига матрицы.  [c.199]

Для объяснения поведения при ползучести сплавов, упрочнеп-ных монокарбидами, могут быть использованы представления, развитые Томсоном и др. [61] в работе по исследованию сплава, упрочненного карбидом хрома. Рассмотрим для простоты псевдо-бинарный никелевый сплав, упрочненный Nb . Предел длительной 100-часовой прочности при 1093° С этого сплава, по данным Лемке и Томсона [42], составляет 55 МН/м . Прикладываемое напряжение, которое ниже предела текучести, распределяется между компонентами в отношении, примерно равном отношению их модулей упругости. При этой температуре отношение модуля упругости волокна i< модулю упругости матрицы можно принять равным 4 1, а напряжения в волокне и матрице составят 164 и 41 МН/м соответственно. Матрица не может выдержать напряжения такой величины без разрушения дая е короткое время, поэтому она релаксирует путем ползучести и напряжение передается карбидной фазе.  [c.142]

Возможность применения боралюминия в авиакосмической технике обусловлена его высокой жаропрочностью и высоким сопротивлением ползучести, определяющими эффективность и стабильность, например, таких деталей, как лопатки вентиляторов двигателей. Поведение боралюминия при высоких температурах в течение длительного времени более сложно по сравнению с поведением большинства монолитных материалов из-за происходящих в нем изменений характера остаточных напряжений, взаимодействия меноду волокном и матрицей и процессов, протекающих отдельно в кан<дом из компонентов. Образцы композиционного материала имеют максимальное значение свойств в том случае, когда направление прилон енной нагрузки совпадает с направлением укладки волокон. Свойства композиционных материалов под углом к направлению укладки волокон резко падают с увеличением угла из-за возрастающей роли беспрепятственного сдвига матрицы.  [c.473]


Анализ поведения меди, армированной однонаправленными волокнами, показал, что в этом случае происходит дробление волокон (рис. 2, б), что, как уже отмечалось, разупрочняет матрицу и снижает сопротивление ползучести. Выдергивания волокон при температурах вплоть до 800° С не наблюдалось, что указывает на сохранение в исследованном материале хорошей связи на границе раздела волокно—матрица.  [c.147]

Для упрочнения матрицы и увеличения ее сопротивления ползучести, исходя, в частности, из того, что металлургический сплав РЬ—РЬО (1,5—4%) обладает улучшенными показателями, пытались соосадить частицы РЬО, РЬОг, РЬз04 в КЭП. Естественно, что частицы растворялись в электролите, и в результате получались некачественные покрытия. Следовательно, для получения покрытий с заданными свойствами необходимо учитывать химическое поведение дисперсных частиц в среде электролита.  [c.213]


Смотреть страницы где упоминается термин Матрицы поведение при ползучести : [c.76]    [c.187]   
Разрушение и усталость Том 5 (1978) -- [ c.284 ]



ПОИСК



Поведени



© 2025 Mash-xxl.info Реклама на сайте