Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интеграл уравнения в частных производных общий особый

Импульсов пространство 38 Импульсы обобщенные 33 Интеграл уравнения в частных производных общий 73 ----особый 74  [c.153]

Решение уравнения в частных производных методом разделения переменных. У нас нет какого-либо общего метода решения уравнений в частных производных. Однако при некоторых особых условиях оказывается возможным найти полный интеграл уравнения Гамильтона — Якоби. Этот специальный класс задач сыграл важную роль в развитии, теоретической физики, так как оказалось, что ряд основных задач теории атома Бора принадлежит к этому классу. В таких задачах одно уравнение в частных производных с п переменными может быть заменено п обыкновенными дифференциальными уравнениями с одной независимой переменной, которые полностью интегрируются. Такие задачи называются задачами с разделяющимися переменными .  [c.275]


Функция у (х, с,,..., С ), тождественно удовлетворяющая диференциальному уравнению п-го порядка г(х, у, у, ..., v< )) = О и зависящая от п произвольных постоянных l,..., Сп, называется общим решением уравнения. Соотношение Ф (v, у. С,,..., С ) = О, определяющее общее решение уравнения как неявную функцию независимой переменной, называется общим интегралом уравнения. Произвольные постоянные могут быть определены. если заданы начальные условия, т. е. при некотором значении Xq независимой переменной X заданы значения функции и её производных JV, ..з д(п —1). Если соблюдаются условия теоремы о существовании и единственности решения (см. стр. 226), то общий интеграл уравнения даёт полное решение задачи об интегрировании диференциального уравнения п-го порядка. В противном случае могут существовать так называемые особые интегралы, которые нельзя получить из общего интеграла при частных значениях произвольных постоянных.  [c.224]

Уже в 30-е годы было начато изучение устойчивости более общих систем, чем у Ляпунова, что соответствует переходу от пространств конечного числа измерений с евклидовой метрикой к пространствам бесконечно большого числа измерений и метрикой общего характера. Эти исследования были продолжены и значительно продвинуты за последние два десятилетия с широким использованием методов функционального анализа. Переход к пространствам бесконечного числа измерений и общим метрикам дал возможность расширить теорию устойчивости на механические системы, описываемые не обыкновенными дифференциальными уравнениями, а бесконечными системами конечноразностных уравнений, уравнениями с запаздывающим или опережающим аргументом, уравнениями в частных производных и интегро-дифференциальными уравнениями и т. д. Такие системы все чаще встречаются в технике и физике, в теории устойчивости их удельный вес, несомненно, будет расти. Для таких систем подход к проблеме устойчивости в духе Ляпунова имеет особое значение, потому что для них весьма важен правильный учет начальных возмущений и распределение решений по типам и классам в зависимости от начальных условий. Опыт показывает, что здесь встречается гораздо большее разнообразие зон начальных условий, которым соответствуют разные по характеру решения, т. е. разное поведение физической системы.  [c.132]



Основные принципы классической механики и классической теории поля (1976) -- [ c.74 ]



ПОИСК



Интеграл общий

Интеграл уравнений

Интеграл уравнения в частных производных общий

Интегралы Производные

К п частный

Общие уравнения

Особые

Производная

Производная частная

Уравнение в частных производных

Частные производные

Частный интеграл



© 2025 Mash-xxl.info Реклама на сайте