Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметрия анизотропного тела см трансверсально изотропного материала

Надлежащий выбор системы координат позволяет существенно упростить исходные матрицы податливости и жесткости, если материал обладает симметрией упругих свойств. Рассмотрим, например, композиционный материал, состоящий из упругого связующего, регулярно армированного в одном направлении упругими волокнами (рис. 1.2). Для описания деформационных свойств такого материала можно воспользоваться моделью однородного анизотропного упругого тела. В произвольно ориентированной системе координат матрица податливости (и жесткости) будет целиком заполненной, а число подлежащих определению независимых коэффициентов не ясным. В системе координат (Xi, х , х ) плоскость (х , Xs) можно считать плоскостью упругой симметрии матрица коэффициентов податливости в этом случае будет иметь структуру (1.11). Еще более полно симметрия упругих свойств рассматриваемого материала выявляется в системе координат (х1, хг, Xj) плоскость х, Хг) тоже можно считать плоскостью упругой симметрии. Следовательно, теперь все координатные плоскости — плоскости упругой симметрии, материал является ортотропным и матрица коэффициентов податливости имеет структуру (1.12). Более того, при равномерном распределении армирующих волокон допустимо считать, что упругие свойства во всех направлениях в плоскости (x l, Хз) идентичны. Теперь становится ясным, что рассматриваемый материал является трансверсально изотропным, матрицы его коэффициентов податливости имеют вид  [c.13]


Анизотропные тела как объекты, свойства которых зависят от ориентации системы координат, имеют более сложную систему параметров, характеризующих диссипацию энергии. Так, для трансверсально-изотропного материала (однонаправленного композиционного моноелоя), рассматриваемого в системе координат, оси которой совпадают с осями симметрии, в случае плоского напряженного состояния функция рассеяния энергии [9 имеет вид  [c.305]

Проблема воздействия импульсных сил, распределенных вдоль линии, на анизотропное полупространство была рассмотрена для трансверсально изотропного упругого материала в работе Краута [88]. В частности, если поверхность полупространства нормальна к оси симметрии, линейный источник вызывает появление двух волновых поверхностей (рис. 22). Обобщение этого решения на случай соударения с упругим телом к настоящему времени не получено. Волны, образующиеся при сосредоточенном ударном нагружении изотропного полупространства, изучались Пекерисом [135 ], который показал, что большие поверхностные напряжения распространяются со скоростью поверхностных волн Релея. Однако решение динамической задачи об ударе упругой сферы по упругому полупространству до настоящего времени не известно.  [c.316]


Анализ и проектирование конструкций. Том 7. Ч.1 (1978) -- [ c.161 , c.164 ]



ПОИСК



SU (3)-Симметрия

Анизотропное тело

Анизотропность

Изотропность

Изотропные и анизотропные материалы

Изотропные и анизотропные тела

Материал анизотропный

Материал изотропный

Симметрия анизотропного тела

Симметрия анизотропного тела см изотропного материала

Симметрия материала

Тело (см. материал)

Тело изотропное,

Трансверсально-изотропный материал

Трансверсальность



© 2025 Mash-xxl.info Реклама на сайте