Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вектор кокасательный к многообразию

Рассмотрим систему координат. . ., в окрестности проекции этой точки на конфигурационное пространство. Пусть Р1,. . ., Рп — соответствующие координаты в слоях кокасательного расслоения. В окрестности нашей особой точки лагранжево многообразие можно рассматривать как график вектор-функции (9и Рг > р ) от переменных (р , д ,. . ., (или вектор-функции аналогичного вида, в которой роль вьщеленной координаты исполняет не первая, а какая-либо из остальных).  [c.412]


В результате сиьшлектизации получается 2и-мерное многообразие. Это многообразие есть пространство кокасательного расслоения исходного и-мерного многообразия без нулевых векторов. При этом действие мультипликативной группы вещественных чисел на слое сводится к уьшожению на числа векторов кокасательного пространства.  [c.323]

Ур-ние Эйлера (для твёрдого тела). Если действие группы Ли G на С. м. М сохраняет симплектич. структуру, то алгебра М G-иввариантных ф-ций ва М замкнута относительно скобки Пуассона. Рассматривая М как алгебру ф-цнй на многообразия А, получаем разбиение А на симплектич. слои, а также проекцию М -> А, сохраняющую скобки Пуассона. На этой конструкции основано понижение порядка симметричных гамильтоновых систем траектории на М б-инвариант-ного поля Проектируются в траектории гамильтонова потока на слоях в. 4 с гамильтонианом И . Таким способом возникает, напр., ур-ние Эйлера, т = [тш], описывающее эволюцию вектора момента импульса во внутр. координатах твёрдого тела при его свободном вращении. Здесь G — группа вращений М = T G — её кокасательное расслоение, действие G на М зада-ётся сдвигами на группе, а проекция М А = MiG совпадает с отображением момента T G —> ф в двой-  [c.522]

Имеется еще один распространенный вариант определения симплектической структуры и гамильтоновой системы. Исходным пунктом здесь является замкнутая невырожденная 2-форма П на четномерном многообразии М. Форма П позволяет построить естественный изоморфизм касательного Т М и кокасательного Т М пространств вектору Т М ставится в соответствие ковектор  [c.22]

Замечание. Рассмотрим лагранжеву механическую систему с конфигурационным многообразием V и функцией Лагранжа Ь. Легко сообразить, что лагранжева обобщенная скорость д — касательный к конфигурационному многообразию V вектор, а обобщенный импульс р = дидд — кока-сательный. Позтому фазовое р, -пространство лагранжевой задачи — зто кокасательное расслоение конфигурационного многообразия. Итак, предыдущая теорема показывает, что фазовое пространство механической задачи имеет естественную структуру симплектического многообразия.  [c.176]

Доказательство. Сиьшлектизация 2п — 1-мерного многообразия всех контактных элементов на и-мерном гладком многообразии, построенная по полю 2п — 2-мерных контактных плоскостей, есть по построению пространство кокасательного расслоения исходного и-мерного многообразия без нулевых кокасательных векторов. Каноническая 1-форма а на симплектизации есть, согласно ее определению, та самая 1-форма на кокасательном расслоении, которую мы назвали р д и которая лежит в основе гаьшльтоновой механики (см. 37). Ее производная йа. есть, следовательно, форма айр Д йд , задающая обычную симплектическую структуру фазового пространства. Стало быть, форма йа не вырождена. Значит, по предыдущему замечанию, поле контактных гиперплоскостей не вырождено. Следствие доказано.  [c.325]


B. Пуассоновы структуры на плоекости. С точки зрения дифференциальной геометрии пуассонова структура задается гладким бивекторным полем на многообразии. Действительно, скобка Пуассона в каждой точке сопоставляет число паре кокасательных векторов. Поэтому она является сечением расслоения внешних квадратов касательных пространств, т. е. бивекторным полем.  [c.425]

Симплектическая структура кокасательного расслоения Т М определяется исключительно гладкой структурой многообразия N. Вначале мы определим замечательную 1-форму (о = =р-(1д — значение ковектора р Т М на касательном векторе g T,N. В координатах р<, (1<1<п) эта форма имеет вид i Pidgi. Симплектическая структура на М задается 2-формой = (0, которая замкнута и невырождена.  [c.34]

Вооружённый фронт на V определяет коническое лагранжево подмногообразие в пространстве Т У кокасательного расслоения V. Это подмногообразие состоит иэ 1-форм, нулевых на касающихся фронта контактных элементах и положительных на вооружающих нормалях. Для типичного фронта это коническое многообразие гладко иммерси-ровано в Т У. Риманова метрика на V определяет иммерсию фронта в это коническое коническое многообразие (отправляет точку фронта в 1-форму, равную 1 на вооружающем нормальном единичном векторе). Индекс одномерного фронта, определённый выше как число точек перегиба (с учётом их знаков), равен индексу Маслова кривой, соответствующей этому фронту и лежащей на коническом лагранжевом подмногообразии в Т У (см. [107]).  [c.123]


Смотреть страницы где упоминается термин Вектор кокасательный к многообразию : [c.176]    [c.211]   
Математические методы классической механики (0) -- [ c.176 ]



ПОИСК



Многообразие



© 2025 Mash-xxl.info Реклама на сайте