Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропная среда, уравнение равновесия

Анизотропная среда, уравнение равновесия 08  [c.364]

Поле смещений и (г) вокруг дислокации может быть выражено в общем виде, если известен тензор Грина уравнений равновесия данной анизотропной среды, т. е. функция, определяющая смещение Нц созданное в неограниченной среде сосредоточенной в начале координат единичной силой, направленной вдоль оси (см. 8). Это легко сделать с помощью следующего формального приема.  [c.152]


Тензор Оп для анизотропной среды найден в указанной на с. 43 статье. Этот тензор, вообще говоря, очень сложен. В случае прямолинейной дислокации, когда мы имеем дело с плоской задачей теории упругости, может оказаться проще непосредственно решать уравнения равновесия,  [c.153]

Изложим метод построения такого решения. Будем исходить из закона Гука (3.15) гл. II. После подстановки этих соотношений в уравнения (4.4) гл. II получаем уравнения равновесия в смещениях для анизотропной среды  [c.662]

Для анизотропно несжимаемой среды в задаче А добавляется ш уравнений (3.96), для т неизвестных У , х=1,. .., т, входящих в уравнения равновесия (3.93), ибо в (3.80) останутся только соотношения  [c.248]

Соотношения (4.31) показывают, что в неограниченной среде, описываемой уравнением состояния (4.23), распространение звуковой волны всегда сопровождается поглощением (мнимая часть 1/с (со)) и дисперсией (действительная часть l/ (со)), которые связаны между собой. Подчеркнем тот факт, что приведенный вывод дисперсионных соотношений (4.29) опирается только на аналитичность и ограниченность функции X (со) в верхней полуплоскости со, которые обусловлены условием причинности и стремлением среды к состоянию термодинамического равновесия. Справедливость соотношений (4.31) для функции ф(со)= 1/с(со)—1/соо, характеризующей волновой процесс в среде, кроме того, обусловлена наличием достаточно простой связи (4,30) между с(ш) и х((й), не приводящей к нарушениям аналитичности с (со) или 1/с (со). В более сложных случаях, например для электромагнитных волн в анизотропной плазме [29] или для нормальных звуковых и электромагнитных волн в слоистых средах [30], связь между параметрами среды и волновыми параметрами приводит к нарушению аналитичности последних, и дисперсионные соотношения в общем случае не имеют места.  [c.55]

Рассмотрим теперь модель, в которой принимается, что точечный дефект находится в анизотропной упругой среде. Упругие свойства такой среды характеризуются уже пе двумя независимымп параметрами (например, X п ц) изотропной среды, а тензором модулей упругости число независимых компонент которого в общем случае равно 21. Будем рассматривать дефект как точечный источник деформаций и напряжений. Тогда в отсутствие объемных сил система трех уравнений равновесия такой анизотропной среды имеет вид  [c.49]


Отсутствие унифицированной гибкой модели для оценки упругого поведения многослойных композитов (скажем, со 100 слоями) не позволяет проанализировать виды разрушения в конструкциях из композитов. Глобальные модели, которые следуют из предполагаемого вида поля перемещений и приводят к определению эффективных модулей упругости слоистых композитов, недостаточно точны для расчета напряжений. С другой стороны, локальные модели, в которых каждый слой представляется в виде однородной анизотропной среды, становятся очень громоздкими, когда число слоев в композите достаточно велико, как было показано в предыдущем разделе. Самосогласованная модель Пэйгано и Сони [38] позволяет детально определить поведение материалов в локальной области, в то время как глобальная область представляется эффективными свойствами. В настоящем исследовании слоистый композит по толщине делится на две части. Для вывода определяющих уравнений равновесия используется вариационный принцип. Для глобальной области слоистого композита применен функционал потенциальной энергии, тогда как в локальной области использован функционал Рейсснера.  [c.66]

Необходимо отметить, что теория пластичности неоднородных и анизотропных сред является еще недостаточно разработанным разделом теории пластичности. Так, пластическая неоднородйость сильно влияет и на механику пластического равновесия тела, и на математическую сторону вопроса. Усложняются уравнения, теряют силу некоторые обычные теоремы и представления 157],  [c.88]


Смотреть страницы где упоминается термин Анизотропная среда, уравнение равновесия : [c.49]    [c.149]   
Теория сплавов внедрения (1979) -- [ c.8 ]



ПОИСК



Анизотропная среда, уравнение

Анизотропность

Среда анизотропная

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте